Published online by Cambridge University Press: 26 April 2006
Two-dimensional Langmuir circulation in a layer of stably stratified water and the mathematically analogous problem of double-diffusive convection are studied with mixed boundary conditions. When the Biot numbers that occur in the mechanical boundary conditions are small and the destabilizing factors are large enough, the system will be unstable to perturbations of large horizontal length. The instability may be either direct or oscillatory depending on the control parameters. Evolution equations are derived here to account for both cases and for the transition between them. These evolution equations are not limited to small disturbances of the nonconvective basic velocity and temperature fields, provided the spatial variations in the horizontal remain small. The direct bifurcation may be supercritical or subcritical, while in the case of oscillatory motions, stable finite-amplitude travelling waves emerge. At the transition, travelling waves, standing waves, and modulated travelling waves all are stable in sub-regimes.