Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-09T07:37:20.217Z Has data issue: false hasContentIssue false

Large-Reynolds-number asymptotic analysis of viscous centre modes in vortices

Published online by Cambridge University Press:  07 August 2007

STÉPHANE LE DIZÈS
Affiliation:
Institut de Recherche sur les Phénomènes Hors Équilibre, 49, rue F. Joliot-Curie, B.P. 146, F-13384 Marseille cedex 13, France
DAVID FABRE
Affiliation:
Institut de Mécanique des Fluides de Toulouse, allée du Prof. Soula, F-31400 Toulouse, France

Abstract

This paper presents a large-Reynolds-number asymptotic analysis of viscous centre modes on an arbitrary axisymmetrical vortex with an axial jet. For any azimuthal wavenumber m and axial wavenumber k, the frequency of these modes is given at leading order by ω0 = mΩ0 + kW0 where Ω0 and W0 are the angular and axial velocities of the vortex at its centre. These modes possess a multi-layer structure localized in an O(Re−1/6) neighbourhood of the vortex. By a multiple-scale matching analysis, we demonstrate the existence of three different families of viscous centre modes whose frequency expands as ω(n) ∼ ω0 + Re−1/3ω1 + Re−1/2ω(n)2. One of these families is shown to have unstable eigenmodes when H0 = 2Ω0k(2kΩ0mW2) < 0 where W2 is the second radial derivative of the axial flow in the centre. The growth rate of these modes is given at leading order by σ ∼ (3/2)(H0/4)1/3Re−1/3. Our results prove that any vortex with a jet (or jet with swirl) such that Ω0W2 ≠ 0 is unstable if the Reynolds number is sufficiently large. The spatial structure of the viscous centre modes is obtained and simple approximations which capture the main feature of the eigenmodes are also provided.

The theoretical predictions are compared with numerical results for the q-vortex model (or Batchelor vortex) for Re ≥ 105. For all modes, a good agreement is demonstrated for both the frequency and the spatial structure.

Type
Papers
Copyright
Copyright © Cambridge University Press 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Abramowitz, M. & Stegun, I. A. 1965 Handbook of Mathematical Functions. Dover.Google Scholar
Ash, R. L. & Khorrami, M. R. 1995 Vortex stability. In Fluid Vortices (ed. Green, S. I.), chap. VIII, pp. 317372. Kluwer.Google Scholar
Batchelor, G. K. 1964 Axial flow in trailing line vortices. J. Fluid Mech. 20, 645658.CrossRefGoogle Scholar
Bender, C. M. & Orszag, S. A. 1978 Advanced Mathematical Methods for Scientists and Engineers. McGraw-Hill.Google Scholar
Chapman, S. J. 2002 Subcritical transition in channel flows. J. Fluid Mech. 451, 3597.CrossRefGoogle Scholar
Cotton, F. W. & Salwen, H. 1981 Linear stability of rotating Hagen-Poiseuille flow. J. Fluid Mech. 108, 101125.Google Scholar
Fabre, D. & Jacquin, L. 2004 Viscous instabilities in trailing vortices at large swirl numbers. J. Fluid Mech. 500, 239262.CrossRefGoogle Scholar
Fabre, D. & LeDizès, S. Dizès, S. 2007 Viscous and inviscid centre modes in vortices: the vicinity of the neutral curves. J. Fluid Mech. (submitted).CrossRefGoogle Scholar
Fabre, D., Sipp, D. & Jacquin, L. 2006 The Kelvin waves and the singular modes of the Lamb-Oseen vortex. J. Fluid Mech. 551, 235274.CrossRefGoogle Scholar
Heaton, C. 2007 Centre modes in inviscid swirling flows, and their application to the stability of the Batchelor vortex. J. Fluid Mech. 576, 325348.Google Scholar
Khorrami, M. R. 1991 On the viscous modes of instability of a trailing line vortex. J. Fluid Mech. 225, 197212.Google Scholar
Khorrami, M. R. 1992 Behavior of asymmetric unstable modes of a trailing line vortex near the upper neutral curve. Phys. Fluids A 4, 13101313.CrossRefGoogle Scholar
Landau, L. & Lifchitz, E. 1966 Mécanique Quantique, \mboxThéorie non relatiste. Éditions MIR.Google Scholar
Le Dizès, S. 2004 Viscous critical-layer analysis of vortex normal modes. Stud. Appl. Maths 112 (4), 315332.CrossRefGoogle Scholar
Le Dizès, S. & Fabre, D. 2007 Viscous ring modes in vortices. In preparation.Google Scholar
Leibovich, S. 1978 The structure of vortex breakdown. Annu. Rev. Fluid Mech. 10, 221246.Google Scholar
Leibovich, S. & Stewartson, K. 1983 A sufficient condition for the instability of columnar vortices. J. Fluid Mech. 126, 335356.Google Scholar
Lessen, M. & Paillet, F. 1974 The stability of a trailing line vortex. Part 2. Viscous theory. J. Fluid Mech. 65, 769779.CrossRefGoogle Scholar
Lessen, M., Singh, P. J. & Paillet, F. 1974 The stability of a trailing line vortex. Part 1. Inviscid theory. J. Fluid Mech. 63, 753763.Google Scholar
Mayer, E. W. & Powell, K. G. 1992 Viscous and inviscid instabilities of a trailing vortex. J. Fluid Mech. 245, 91114.Google Scholar
Morawetz, C. A. 1952 The eigenvalues of some stability problems involving viscosity. J. Rat. Mech. Anal. 1, 579603.Google Scholar
Olendraru, C. & Sellier, A. 2002 Viscous effects in the absolute–convective instability of the batchelor vortex. J. Fluid Mech. 459, 371396.Google Scholar
Rossi, M. 2000 Of vortices and vortical layers: An overview. In Vortex Structure and Dynamics (ed. Maurel, A. & Petitjeans, P.). Lecture Notes in Physics, vol. 555, pp. 40123. Springer.Google Scholar
Stewartson, K. 1982 The stability of swirling flows at large Reynolds number when subjected to disturbances with large azimuthal wavenumber. Phys. Fluids 25, 19531957.CrossRefGoogle Scholar
Stewartson, K. & Brown, S. 1985 Near-neutral-centre-modes as inviscid perturbations to a trailing line vortex. J. Fluid Mech. 156, 387399.Google Scholar
Stewartson, K., Ng, T. W. & Brown, S. N. 1988 Viscous centre modes in the stability of swirling \mboxPoiseuille flow. Phil. Trans. R. Soc. Lond. A 324, 473512.Google Scholar
Van Dyke, M. 1975 Perturbation Methods in Fluid Mechanics. Stanford: The Parabolic Press.Google Scholar