Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-09T21:44:55.101Z Has data issue: false hasContentIssue false

Large-eddy simulation of a subsonic cavity flow including asymmetric three-dimensional effects

Published online by Cambridge University Press:  19 April 2007

LIONEL LARCHEVÊQUE
Affiliation:
IUSTI, Université Aix–Marseille I, UMR CNRS 6595, F-13453 Marseille, France
PIERRE SAGAUT
Affiliation:
Laboratoire de Modélisation en Mécanique, Université Pierre et Marie Curie – Paris 6, case 162, 4 place Jussieu, F-75005 Paris, France
ODILE LABBÉ
Affiliation:
ONERA, CFD and Aeroacoustics department, F-92322 Châtillon, France

Abstract

Large-eddy simulations of a cavity configuration yielding a mean flow that exhibits spanwise asymmetry are carried out. Results from the computations reveal that the asymmetry is due to a bifurcation of the whole flow field inside the cavity. It is demonstrated that the bifurcation originates in an inviscid confinement effect induced by the lateral walls. The branch of the bifurcation can be selected by slightly altering the incoming mean flow. Further investigations show that underlying steady spanwise modulations of velocity are amplified under the influence of the lateral walls. The modulation of the streamwise velocity component has the largest energy content and its dominant wavelength contaminates both vertical velocity and pressure. Complementary to these linear interactions, nonlinear energy transfers from streamwise velocity to pressure are also found. A transient analysis highlights the stiff transition from a symmetrical two-structure non-bifurcated flow to a stable unsymmetrical one-and-a-half-structure bifurcated flow. The switch to the bifurcated flow induces an alteration of the Rossiter aero–acoustic loop yielding a change in the dominant Rossiter mode and the appearance of a nonlinear harmonic of the first mode.

Type
Papers
Copyright
Copyright © Cambridge University Press 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Ahuja, K. K. & Mendoza, J. 1995 Effects of cavity dimensions, boundary layer, and temperature on cavity noise with emphasis on benchmark data to validate computational aeroacoustic codes. Contractor Report 4653. NASA.Google Scholar
Albensoeder, S., Kuhlmann, H. C. & Rath, H. J. 2001 Three-dimensional centrifugal-flow instabilities in the lid-driven-cavity problem. Phys. Fluids 13, 121135.CrossRefGoogle Scholar
Barkley, D., protectGabriela m. Gomes, M. Gabriela m. Gomes, M. & Henderson, R. D. 2002 Three-dimensional instability in flow over a backward-facing step. J. Fluid. Mech. 473, 167190.CrossRefGoogle Scholar
Beaudoin, J.-F., Cadot, O., Aider, J.-L. & Wesfreid, J. E. 2004 Three-dimensional stationary flow over a backward-facing step. Eur. J. Mech. B 23, 147155.CrossRefGoogle Scholar
Colonius, T. 2001 An overview of simulation, modeling, and active control of flow/acoustic resonance in open cavities. AIAA Paper 2001-0076.Google Scholar
Forestier, N., Geffroy, P. & Jacquin, L. 2000 Étude expérimentale des propriétés instationnaires d'une couche de mélange compressible sur une cavité : cas d'une cavité ouverte peu profonde. Tech. Rep. RT 22/00153 DAFE. ONERA (in French).Google Scholar
Forestier, N., Jacquin, L. & Geffroy, P. 2003 The mixing layer over a deep cavity at high-subsonic speed. J. Fluid Mech. 475, 101145.CrossRefGoogle Scholar
Gharib, M. & Roshko, A. 1987 The effect of flow oscillations on cavity drag. J. Fluid Mech. 177, 501530.CrossRefGoogle Scholar
Gloerfelt, X., Bailly, C. & Juvé, D. 2000 Calcul direct du rayonnement acoustique d'un coulement affleurant une cavit. C. R. Acad. Sci. Paris IIb 328, 625631.Google Scholar
Gloerfelt, X., Bogey, C., Bailly, C. & Juvé, D. 2002 Aerodynamic noise induced by laminar and turbulent boundary layers over rectangular cavities. AIAA Paper 2002-2476.CrossRefGoogle Scholar
Hunt, J. C. R., Wray, A. A. & Moin, P. 1988 Eddies, stream, and convergence zones in turbulent flows. In Proc. 1988 Summer Program, pp. 193–208. CTR, Stanford.Google Scholar
Karamcheti, K. 1955 Acoustic radiation from two-dimensional rectangular cutouts in aerodynamic surfaces. Tech. Note 3487. NACA.Google Scholar
Kegerise, M. A., Spina, E. F., Garg, S. & Cattafesta, L. N. III 2004 Mode-switching and nonlinear effects in compressible flow over a cavity. Phys. Fluids 16, 678687.CrossRefGoogle Scholar
Komerath, N. M., Ahuja, K. K. & Chambers, F. W. 1987 Prediction and measurement of flows over cavities - a survey. AIAA Paper 87-0166.CrossRefGoogle Scholar
Larchevêque, L., Sagaut, P., , T.-H. & Comte, P. 2004 Large-eddy simulation of a compressible flow in a three-dimensional open cavity at high reynolds number. J. Fluid. Mech. 516, 265301.CrossRefGoogle Scholar
Larchevêque, L., Sagaut, P., Mary, I., Labbé, O. & Comte, P. 2003 Large-Eddy Simulation of a compressible flow past a deep cavity. Phys. Fluids 15, 193210.CrossRefGoogle Scholar
Lenormand, E., Sagaut, P., TaPhuoc, L. Phuoc, L. & Comte, P. 2000 Subgrid-scale models for Large-Eddy Simulation of compressible wall bounded flows. AIAA J. 38, 13401350.CrossRefGoogle Scholar
Lomb, N. R. 1976 Least-squares frequency analysis of unequally spaced data. Astrophys. Space Sci. 39, 447462.CrossRefGoogle Scholar
Mary, I. & Sagaut, P. 2002 LES of a flow around an airfoil near stall. AIAA J. 40, 11391145.CrossRefGoogle Scholar
Maull, D. J. & East, L. F. 1963 Three-dimensional flow in cavities. J. Fluid Mech. 16, 620632.CrossRefGoogle Scholar
Rizzetta, D. P. 1988 Numerical simulation of supersonic flow over a three dimensional cavity. AIAA J. 26, 799807.CrossRefGoogle Scholar
Rockwell, D. & Knisely, C. 1980 Observations of the three-dimensional nature of unstable flow past a cavity. Phys. Fluids 23, 425431.CrossRefGoogle Scholar
Rockwell, D. & Naudascher, E. 1978 Review – self-sustaining oscillations of flow past cavities. Trans. ASME: J. Fluids Engng 100, 152165.Google Scholar
Rockwell, D. & Naudascher, E. 1979 Self-sustained oscillations of impinging free shear layer. Annu. Rev. Fluid Mech. 11, 6794.CrossRefGoogle Scholar
Roshko, A. 1955 Some measurements of flow in a rectangular cutout. Tech. Note 3488. NACA.Google Scholar
Rossiter, J. E. 1964 Wind-tunnel experiments on the flow over rectangular cavities at subsonic and transonic speeds. Aero. Res. Counc. R&M 3438.Google Scholar
Rowley, C. W., Colonius, T. & Basu, A. J. 2002 On self-sustained oscillations in two-dimensional compressible flow over rectangular cavities. J. Fluid Mech. 455, 315346.CrossRefGoogle Scholar
Sagaut, P. 2005 Large-eddy Simulation for Incompressible Flows – An Introduction, 3rd Edn. Springer.Google Scholar
Sagaut, P., Garnier, E., Tromeur, E., Larchevêque, L. & Labourasse, E. 2004 Turbulent inflow conditions for large-eddy simulation of supersonic and subsonic wall flows. AIAA J. 42, 469477.CrossRefGoogle Scholar
Scargle, J. D. 1982 Studies in astronomical time series II. statistical aspects of spectral analysis of unevenly spaced data. Astrophys. J. 263, 835853.CrossRefGoogle Scholar
Shieh, C. M. & Morris, P. J. 2000 Parallel computational aeroacoustic simulation of turbulent subsonic cavity flow. AIAA Paper 2000-1914.CrossRefGoogle Scholar
Sipp, D. & Jacquin, L. 2000 Three-dimensional centrifugal-type instabilities of two-dimensional flows in rotating systems. Phys. Fluids 12, 17401748.CrossRefGoogle Scholar
Stuart, J. T. 1967 On finite amplitude oscillations in laminar mixing layers. J. Fluid Mech. 29, 417440.CrossRefGoogle Scholar
Suponitsky, V., Avital, E. & Gaster, M. 2005 On three-dimensionality and control of incompressible cavity flow. Phys. Fluids 17, 104103.CrossRefGoogle Scholar
Tracy, M. B. & Plentovich, E. B. 1997 Cavity unsteady-pressure measurements at subsonic and transonic speeds. Technical Paper 3669. NASA.Google Scholar