Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-10T05:32:20.909Z Has data issue: false hasContentIssue false

Large-amplitude wavetrains and solitary waves in vortices

Published online by Cambridge University Press:  26 April 2006

S. Leibovich
Affiliation:
Sibley School of Mechanical & Aerospace Engineering, Upson Hall, Cornell University, Ithaca, NY 14853-7501, USA
A. Kribus
Affiliation:
Sibley School of Mechanical & Aerospace Engineering, Upson Hall, Cornell University, Ithaca, NY 14853-7501, USA

Abstract

Large-amplitude axisymmetric waves on columnar vortices, thought to be related to flow structures observed in vortex breakdown, are found as static bifurcations of the Bragg–Hawthorne equation. Solutions of this equation satisfy the steady, axisymmetric, Euler equations. Non-trivial solution branches bifurcate as the swirl ratio (the ratio of azimuthal to axial velocity) changes, and are followed into strongly nonlinear regimes using a numerical continuation method. Four types of solutions are found: multiple columnar solutions, corresponding to Benjamin's ‘conjugate flows’, with subcritical–supercritical pairing of wave characteristics; solitary waves, extending previously known weakly nonlinear solutions to amplitudes large enough to produce flow reversals similar to the breakdown transition; periodic wavetrains; and solitary waves superimposed on the conjugate flow that emerge from the periodic wavetrain as the wavelength or amplitude becomes sufficiently large. Weakly nonlinear soliton solutions are found to be accurate even when the perturbations they cause are fairly strong.

Type
Research Article
Copyright
© 1990 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Batchelor, G. K. 1956 On steady laminar flow with closed streamlines at large Reynolds number. J. Fluid Mech. 1, 177190.Google Scholar
Batchelor, G. K. 1967 Introduction to Fluid Dynamics. Cambridge University Press.
Benjamin, T. B. 1962 Theory of the vortex breakdown phenomenon. J. Fluid Mech. 14, 593629.Google Scholar
Benjamin, T. B. 1967 Some developments in the theory of vortex breakdown. J. Fluid Mech. 28, 6584.Google Scholar
Bragg, S. L. & Hawthorne, W. R. 1950 Some exact solutions of the flow through annular cascade actuator discs. J. Aero. Sci. 17, 243249.Google Scholar
Buckmaster, J. S. & Ludford, G. S. S. 1982 Theory of Laminar Flames. Cambridge University Press.
Courant, R. & Hilbert, D. 1953 Methods of Mathematical Physics. Vol. 1. Interscience.
Dennis, J. E. & Schnabel, R. B. 1983 Numerical Methods for Unconstrained Optimization and Nonlinear Equations. Prentice-Hall.
Dongarra, J. J. 1979 Linpack User's Guide. Society for Industrial and Applied Mathematics.
Escudier, M. P. 1984 Observations of the flow produced in a cylindrical container by a rotating endwall. Exps Fluids 2, 189196.Google Scholar
Faler, J. H. & Leibovich, S. 1977 Disrupted states of vortex flow and vortex breakdown. Phys. Fluids 20, 13851400.Google Scholar
Faler, J. H. & Leibovich, S. 1978 An experimental map of the internal structure of a vortex breakdown. J. Fluid Mech. 86, 313335.Google Scholar
Fiedler, B. B. & Rotunno, R. 1986 A theory for the maximum windspeeds in tornado-like vortices. J. Atmos. Sci. 43, 23282340.Google Scholar
Fraenkel, L. E. 1956 On the flow of rotating fluid past bodies in a pipe.. Proc. R. Soc. Lond. A 233, 506526.Google Scholar
Fraenkel, L. E. 1967 On Benjamin's theory of conjugate vortex flows. J. Fluid Mech. 28, 8596.Google Scholar
Garg, A. K. & Leibovich, S. 1979 Spectral characteristics of vortex breakdown flowfields. Phys. Fluids 22, 20532064.Google Scholar
George, A., Liu, J. & Ng, E. 1980 User Guide for SPARSPAK. University of Waterloo.
Hafez, M., Ahmad, J., Kuruvila, G. & Salas, M. D. 1987 Vortex breakdown simulation. AIAA 87–1343, Honolulu, Hawaii.
Hafez, M. & Salas, M. 1985 Vortex breakdown simulation based on a nonlinear inviscid model. In Studies of Vortex Dominated Flows (ed. M. Y. Hussaini & M. D. Salas), pp. 7682.
Harvey, J. K. 1962 Some observations of the vortex breakdown phenomenon. J. Fluid Mech. 14, 585592.Google Scholar
Howard, L. & Gupta, A. S. 1962 On the hydrodynamic and hydromagnetic stability of swirling flows. J. Fluid Mech. 14, 463476.Google Scholar
Kalnay de Rivas, E. 1972 On the use of nonuniform grids in finite-difference equations. J. Comput. Phys. 10, 202210.Google Scholar
Keller, H. B. 1977 Numerical solution of bifurcation and nonlinear eigenvalue problems. In Applications of Bifurcation Theory (ed. P. H. Rabinowitz), pp. 359384. Academic.
Keller, J. J., Egli, W. & Exley, J. 1985 Force- and loss-free transitions between flow states. Z. Agnew. Math. Phys. 36, 854889.Google Scholar
Kubicek, M. & Marek, M. 1983 Computational Methods in Bifurcation Theory and Dissipative Structures. Springer.
Leibovich, S. 1968 Axially-symmetric eddies embedded in a rotational stream. J. Fluid Mech. 32, 529548.Google Scholar
Leibovich, S. 1970 Weakly nonlinear waves in rotating fluids. J. Fluid Mech. 42, 803822.Google Scholar
Leibovich, S. 1978 The structure of vortex breakdown. Ann. Rev. Fluid Mech. 10, 221246.Google Scholar
Leibovich, S. 1979 Waves in parallel or swirling stratified shear flows. J. Fluid Mech. 93, 401412.Google Scholar
Leibovich, S. 1983 Vortex stability and breakdown. In Aerodynamics of Vortical Type Flows in Three Dimensions (ed. A. D. Young). AGARD Conf. Proc. 342 (NATO), Paper 23 (herein referred to as L).
Leibovich, S. 1984 Vortex stability and breakdown: Survey and extension. AIAA J. 22, 1192–1206 (herein referrred to as L).Google Scholar
Leibovich, S. 1985 Waves and bifurcations in vortex filaments. In Studies of Vortex Dominated Flows (ed. M. Y. Hussaini & M. D. Salas), pp. 315. Springer.
Leibovich, S. 1987 Fully nonlinear structures, wavetrains, and solitary waves in vortex filaments. In Nonlinear Wave Interactions in Fluids (ed. R. W. Miksad, T. R. Akylas & T. Herbert), pp. 6770. ASME.
Leibovich, S., Brown, S. N. & Patel, Y. 1986 Bending waves on inviscid columnar vortices. J. Fluid Mech. 173, 596624.Google Scholar
Leibovich, S. & Stewartson, K. 1983 A sufficient condition for the instability of columnar vortices. J. Fluid Mech. 126, 335356.Google Scholar
Long, R. R. 1953 Steady motion around axisymmetric obstacle moving along the axis of a rotating liquid. J. Met. 10, 197203.Google Scholar
Lugt, H. J. & Abboud, M. 1987 Axisymmetric vortex breakdown in rotating fluid within a container. J. Fluid Mech. 179, 179200.Google Scholar
Maxworthy, T., Mory, M. & Hopfinger, E. 1983 Waves on vortex cores and their relation to vortex breakdown. In Aerodynamics of Vortical Type Flows in Three Dimensions (ed. A. D. Young). AGARD Conf. Proc. 342 (NATO), Paper 29.
Prandtl, L. 1904 über Flüssigkeitsbewegung bei sehr kleiner Reibung, 3rd Intl Congr. Mathematicians (Heidelberg), pp. 484491. Leipzig: B. G. Teubner.
Press, W. H., Flannery, B. P., Teukolsky, S. A. & Vetterling, W. T. 1986 Numerical Recipes. Cambridge University Press.
Randall, J. D. & Leibovich, S. 1973 The critical state: a trapped wave model of vortex breakdown. J. Fluid Mech. 53, 481–493 (herein referred to as RL).Google Scholar
Rayleigh, Lord 1916 On the dynamics of revolving fluids.. Proc. R. Soc. Lond. A 93, 148154.Google Scholar
Ronnenberg, B. 1977 Ein selbstjustierendes 3-Komponenten-Laserdoppleranemometer nach dem Vergleichsstrahlverfahren, angewandt für Untersuchungen in einer stationären zylinder-symmetrischen Drehströmung mit einem Rüchstromgebiet. Max-Planck Inst. für Strömungs-forschung, Göttingen, Bericht 20.
Sarpkaya, T. 1971 On stationary and travelling vortex breakdowns. J. Fluid Mech. 45, 545559.Google Scholar
Smith, B. T., Boyle, J. M., Dongarra, J., Garbow, B., Ikebe, I., Klema, V. C. & Moler, C. B. 1976 Matrix Eigensystem Routines — EISPACK Guide, 2nd edn, Lectures Notes in Computer Science, vol. 6. Springer.
Squire, H. B. 1956 Rotating fluids. Surveys in Mechanics (ed. G. K. Batchelor & R. M. Davies), pp. 139161. Cambridge University Press.
Synge, J. L. 1933 The stability of heterogeneous liquids. Trans. R. Soc. Can. 27, 118.Google Scholar
Szeri, A. J. 1988 Nonlinear stability of axisymmetric swirling flow. Ph.D. dissertation, Cornell University, Ithac, NY.
Szeri, A. J. & Holmes, P. 1988 Nonlinear stability of axisymmetric swirling flows.. Phil. Trans. R. Soc. Lond. A 326, 327354.Google Scholar
Vogel, H. U. 1968 Experimentelle Ergebnisse über die laminare Strömung in einem zylindrischen Gehäuse mit darin rotierender Scheibe. Max-Planck Inst. für Strömungsforschung, Göttingen, Bericht 6.
Yih, C. S. 1965 Dynamics of Nonhomogeneous Fluids. Academic.