Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2024-12-24T17:45:27.010Z Has data issue: false hasContentIssue false

Large-activation-energy theory for premixed combustion under the influence of enthalpy fluctuations

Published online by Cambridge University Press:  14 May 2010

XUESONG WU
Affiliation:
Department of Mathematics, Imperial College London SW7 2AZ, UK
PARVIZ MOIN
Affiliation:
Department of Mechanical Engineering, Stanford University, CA 94305, USA

Abstract

This paper presents a mathematical theory for premixed combustion under the influence of enthalpy fluctuations in the oncoming fresh mixture. On the basis of the assumptions of large activation energy and small Mach number, an analysis of the thermal, hydrodynamic and acoustic regions of a flame is performed to derive an interactive system that describes, on the first-principles basis, the intricate coupling between the flame and its spontaneously emitted acoustic waves. The system, in its general form, is strongly nonlinear and requires a numerical attack. In this paper, it is employed to analyse several fundamental physical processes in relatively simple cases in order to provide useful insights into the role of enthalpy fluctuations in combustion. First, the linear response of the flame to two- or three-dimensional small-amplitude enthalpy fluctuations is considered, and they are found to generate hydrodynamic motion. Secondly, enthalpy fluctuations are shown to radiate sound waves through their interaction with the flame. Thirdly, enthalpy fluctuations and the sound waves emitted by them modify the flame stability, and the analysis shows that a moderate level of enthalpy fluctuation may cause a strong subharmonic parametric instability. Finally, in the small-heat-release limit, an extended Michelson–Sivashinsky equation is derived to describe the nonlinear evolution of the flame under the influence of both the imposed enthalpy fluctuations and the induced acoustic waves. Numerical solutions suggest that the flame evolves into a time-periodic state and acquires a curved profile, which primarily vibrates in the longitudinal direction, while its overall shape remains almost unaltered.

Type
Papers
Copyright
Copyright © Cambridge University Press 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Aldredge, R. C. & Williams, F. A. 1991 Influence of wrinkled premixed-flame dynamics on large scale, low-intensity turbulent flow. J. Fluid Mech. 228, 487511.Google Scholar
Baillot, F., Durox, D. & Prud'homme, R. 1992 Experimental and theoretical study of a premixed vibrating flame. Combust. Flame 88 (2), 149168.CrossRefGoogle Scholar
Birbaud, A. L., Ducruix, S., Durox, D. & Candel, S. 2008 The nonlinear response of inverted ‘V’ flames to equivalence ratio nonuniformities. Combust. Flame 154, 356367.CrossRefGoogle Scholar
Candel, S. 2002 Combustion dynamics and control: progress and challenges. Proc. Combust. Inst. 29, 128.CrossRefGoogle Scholar
Cho, J. H. & Lieuwen, T. 2005 Laminar premixed flame response to equivalence ratio oscillations. Combust. Flame 140, 116129.CrossRefGoogle Scholar
Clavin, P. 1994 Premixed combustion and gasdynamics. Annu. Rev. Fluid Mech. 26, 321352.CrossRefGoogle Scholar
Clavin, P. 2000 Dynamics of combustion fronts in premixed gases: from flames to detonations. Proc. Combust. Inst. 28, 569585.CrossRefGoogle Scholar
Clavin, P., Pelce, P. & He, L. 1990 One-dimensional vibratory instability of planar flames propagating in tubes. J. Fluid Mech. 216, 299322.CrossRefGoogle Scholar
Daou, J., Matalon, M. & Linan, A. 2000 Premixed edge-flames under transverse enthalpy gradients. Combust. Flame 121, 107121.CrossRefGoogle Scholar
Dowling, A. P. & Morgans, A. S. 2005 Feedback control of combustion oscillations. Annu. Rev. Fluid Mech. 37, 151182.CrossRefGoogle Scholar
Ducruix, S., Durox, D. & Candel, S. 2000 Theoretical and experimental determination of the transfer function of laminar premixed flame. Proc. Combust. Inst. 28, 765773.CrossRefGoogle Scholar
Ducruix, S., Schuller, T., Durox, D. & Candel, S. 2003 Combustion dynamics and instabilities: elementary coupling and driving mechanisms. J. Propul. Power 19 (5), 722734.CrossRefGoogle Scholar
Garrido-Lopez, D. & Sarkar, S. 2005 Effects of imperfect premixing coupled with hydrodynamic instability on flame propagation. Proc. Combust. Inst. 30, 621627.CrossRefGoogle Scholar
Harrje, D. & Reardon, F. 1972 Liquid propellant rocket combustion instability. NASA Rep. SP-194.Google Scholar
Harten, A. V., Kapila, A. K. & Matkowsky, B. J. 1984 Acoustic coupling of flames. SIAM J. Appl. Math. 44, 982995.CrossRefGoogle Scholar
Jimenez, C., Cuenot, B., Poinsot, T. & Howarth, D. 2002 Numerical simulation and modelling for lean stratified propane-air flames. Combust. Flame 128, 121.CrossRefGoogle Scholar
Jones, C. M., Lee, J. G. & Santavicca, D. A. 1999 Closed-loop active control of combustion instabilities using subharmonic secondary fuel injection. J. Propul. Power 15 (4), 584590.CrossRefGoogle Scholar
Joulin, G. & Cambray, P. 1992 On a tentative, approximate evolution equation for markedly wrinkled premixed flames. Combust. Sci. Technol. 81, 243256.CrossRefGoogle Scholar
Langhorne, P. J. 1988 Reheat buzz: an acoustically coupled combustion instability. Part I. Experiment. J. Fluid Mech. 193, 417443.CrossRefGoogle Scholar
Lee, J. G., Kim, K. & Santavicca, D. A. 2000 Measurement of equivalence ratio fluctuation and its effect on heat release during unstable combustion. Proc. Combust. Inst. 28, 415421.CrossRefGoogle Scholar
Lieuwen, T. 2003 Modelling premixed combustion–acoustic wave interactions: a review. J. Propul. Power 19 (5), 765781.CrossRefGoogle Scholar
Lieuwen, T., Torres, H., Johnson, C. & Zinn, B. T. 2001 A mechanism of combustion instability in lean premixed gas turbine combustors. ASME J. Engng Gas Turbine 123, 182189.CrossRefGoogle Scholar
Lieuwen, T. & Zinn, B. T. 1998 The role of equivalence ratio oscillations in driving combustion instabilities in low NOx gas turbines. Proc. Combust. Inst. 27, 18091816.CrossRefGoogle Scholar
Markstein, G. H. 1953 Instability phenomena in combustion waves. Proc. Combust. Inst. 4, 4459.CrossRefGoogle Scholar
Markstein, G. H. & Squire, W. 1955 On the stability of a plane flame front in oscillatory flow. J. Am. Acoust. Soc. 27 (3), 416424.CrossRefGoogle Scholar
Matalon, M. 2007 Intrinsic flame instability in premixed and nonpremixed combustion. Annu. Rev. Fluid Mech. 39, 163191.CrossRefGoogle Scholar
Matalon, M. & Matkowsky, B. J. 1982 Flames as gasdynamic discontinuities. J. Fluid Mech. 124, 239259.CrossRefGoogle Scholar
Matalon, M. & Metzener, P. 1997 The propagation of premixed flames in closed tubes. J. Fluid Mech. 336, 331350.CrossRefGoogle Scholar
Matkowsky, B. J. & Sivashinsky, G. I. 1979 An asymptotic derivation of two models in flame theory associated with the constant density approximation. SIAM J. Appl. Math. 37, 686699.CrossRefGoogle Scholar
McIntosh, A. C. 1991 Pressure disturbances of different length scales interacting with conventional flames. Combust. Sci. Technol. 75, 287309.CrossRefGoogle Scholar
McIntosh, A. C. 1993 The linearized response of the mass burning rate of a premixed flame to rapid pressure changes. Combust. Sci. Technol. 91, 3329–346.CrossRefGoogle Scholar
Mikolaitis, D. 1984 The unsteady propagation of premixed flames through nonhomogeneous mixtures and thermal gradient. Combust. Flame 57, 8794.CrossRefGoogle Scholar
Mongia, B., Dibble, R. & Lovett, J. 1998 Measurement of air-fuel fluctuations caused by combustor driven oscillations. Paper 98-GT-304. ASME.CrossRefGoogle Scholar
Pelce, P. & Clavin, P. 1982 Influence of hydrodynamics and diffusion upon the stability limits of laminar premixed flames. J. Fluid Mech. 124, 219237.CrossRefGoogle Scholar
Pelce, P. & Rochwerger, D. 1992 Vibratory instability of cellular flames propagating in tubes. J. Fluid Mech. 239, 293307.CrossRefGoogle Scholar
Peters, N. 2000 Turbulent Combustion. Cambridge University Press.CrossRefGoogle Scholar
Peters, N. & Ludford, G. S. S. 1984 The effect of pressure variations on premixed flames. Combust. Sci. Technol. 34, 331344.CrossRefGoogle Scholar
Pitsch, H. 2005 A consistent level set formulation for large-eddy simulation of premixed turbulent combustion. Combust. Flame 133, 587598.CrossRefGoogle Scholar
Poinsot, T. J., Trouve, A. C., Veynante, D. P., Candel, S. M. & Esposito, E. J. 1987 Vortex-driven acoustically coupled combustion instabilities. J. Fluid Mech. 177, 265292.CrossRefGoogle Scholar
Rahibe, M., Aubry, N. & Sivashinsky, G. I. 1996 Stability of pole solutions for planar propagating flames. Phys. Rev. E 54, 49584972.CrossRefGoogle ScholarPubMed
Rastigejev, Y. & Matalon, M. 2006 Nonlinear evolution of hydrodynamically unstable premixed flames. J. Fluid Mech. 554, 371392.CrossRefGoogle Scholar
Richards, G. A. & Janus, M. 1997 Characterization of oscillations during gas turbine combustion. Paper 97-GT-244. ASME.CrossRefGoogle Scholar
Richards, G. A., Janus, M. & Robey, E. H. 1999 Control of flame oscillations with equivalence ratio modulation. J. Propul. Power 15 (2), 232240.CrossRefGoogle Scholar
Schadow, K. C. & Gutmark, E. 1992 Combustion instability related to vortex shedding in dump combustors and their passive control. Prog. Energy Combust. Sci. 18, 117132.CrossRefGoogle Scholar
Schuller, T. D., Ducruix, S., Durox, D. & Candel, S. 2002 Modelling tools for the prediction of premixed flame transfer functions. Proc. Combust. Inst. 29, 107113.CrossRefGoogle Scholar
Schuller, T. D., Durox, D. & Candel, S. 2003 A unified model for the prediction of flame transfer functions: comparisons between conic and V-flame dynamics. Combust. Flame 134, 2134.CrossRefGoogle Scholar
Searby, G. 1992 Acoustic instability in premixed flames. Combust. Sci. Technol. 81, 221231.CrossRefGoogle Scholar
Searby, G. & Clavin, P. 1986 Weakly turbulent, wrinkled flames in premixed gases. Combust. Sci. Technol. 46, 167193.CrossRefGoogle Scholar
Searby, G. & Rochwerger, D. 1991 A parametric acoustic instability in premixed flames. J. Fluid Mech. 231, 529543.CrossRefGoogle Scholar
Sivasegaram, S., Tsai, R. F. & Whitelaw, J. H. 1995 Control of combustion oscillations by forced oscillation of part of fuel supply. Combust. Sci Technol. 105, 6783.CrossRefGoogle Scholar
Sivasegaram, S. & Whitelaw, J. 1987 Oscillations in axisymmetric dump combustors. Combust. Sci. Technol. 52, 413426.CrossRefGoogle Scholar
Sivashinsky, G. I. 1977 Nonlinear analysis of hydrodynamic instability in laminar flames. Part I. Derivation of basic equations. Acta Astronaut. 4, 11771206.CrossRefGoogle Scholar
Tachibana, S., Zimmer, L., Kurosawa, Y. & Suzuki, K. 2007 Active control of combustion oscillations in a lean premixed combustor by secondary fuel injection coupling with chemiluminescence imaging technique. Proc. Combust. Inst. 31, 32253233.CrossRefGoogle Scholar
Vaynblat, D. & Matalon, M. 1999 Stability of pole solutions for planar propagating flames. Part I. Exact eigenvalues and eigenfunctions. SIAM J. Appl. Math. 60, 679702.CrossRefGoogle Scholar
Weigand, P., Meier, W., Duan, X. & Aigner, M. 2007 Laser-based investigation of thermoacoustic instabilities in a lean premixed gas turbine. ASME J. Engng Gas Turbine 129, 664671.CrossRefGoogle Scholar
Wu, X. 2005 Asymptotic approach to combustion instability. Phil. Trans. R. Soc. Lond. 363, 12471259.Google ScholarPubMed
Wu, X. & Law, C. K. 2009 Flame–acoustic resonance initiated by vortical disturbances. J. Fluid Mech. 637, 173211.CrossRefGoogle Scholar
Wu, X. & Moin, P. 2008 Large-activation-energy theory for premixed combustion under the influence of enthalpy fluctuations in the oncoming mixture. Part I. General formulation. In Annual Research Briefs, pp. 403419. Center for Turbulence Research, Stanford University.Google Scholar
Wu, X., Wang, M., Moin, P. & Peters, N. 2003 Combustion instability due to the nonlinear interaction between sound and flame. J. Fluid Mech. 497, 2353.CrossRefGoogle Scholar
Yu, K. H., Trouve, A. & Daily, J. W. 1991 Low-frequency pressure oscillations in a model ramjet combustor. J. Fluid Mech. 232, 4772.CrossRefGoogle Scholar
Zimmer, L. & Tachibana, S. 2007 Laser-induced plasma spectroscopy for local equivalence ratio measurements in an oscillating combustion environment. Proc. Combust. Inst. 31, 737745.CrossRefGoogle Scholar