Hostname: page-component-5f745c7db-2kk5n Total loading time: 0 Render date: 2025-01-06T08:08:36.386Z Has data issue: true hasContentIssue false

Laminar boundary-layer transition on a heated underwater body

Published online by Cambridge University Press:  20 April 2006

Gerald C. Lauchle
Affiliation:
The Pennsylvania State University, Applied Research Laboratory, Post Office Box 30, State College, PA 16804
G. B. Gurney
Affiliation:
The Pennsylvania State University, Applied Research Laboratory, Post Office Box 30, State College, PA 16804

Abstract

A large (3.05 m long × 0.32 m diameter) heated-surface, axisymmetric body, designed for transition research in a 1.22 m diameter water tunnel is described. Boundary-layer transition data are presented as functions of the heating power supplied to the body and the total concentration of free-stream particulate matter in the water. Body surface temperatures range from 0 to 25°C over the ambient water temperature, and the total heat supplied ranges from 0 to 93.3 kW. Transition-arclength Reynolds numbers are found to vary from 4.5 × 106 for the body operating cold to 3.64 × 107 for the maximum heat level considered. The concentration of free-stream particles is shown to affect the transition Reynolds number. These particles range in diameter from 10 to 70 μm and their concentration ranges from less than 5 to 198 particles per cm3. The decrease in transition Reynolds number due to to the higher concentration of particles is of order 30%.

Type
Research Article
Copyright
© 1984 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Barker, S. J. & Gile, D. 1981 J. Fluid Mech. 104, 139.
Billet, M. L. & Gates, E. M. 1981 Trans. ASME. I: J. Fluids Engng 103, 8.
Chen, C. P., Goland, Y. & Reshotko, E. 1979 Generation rate of turbulent patches in the laminar boundary layer of a submersible. In Viscous Flow Drag Reduction (ed. G. R. Hough), p. 73 (Prog. Astro. Aero. 72).
Chen, K. K. & Thyson, N. A. 1971 AIAA J. 9, 821.
Davis, R. J. & Billet, M. L. 1983 Light-scattering system: probe volume statistical analysis. In Proc. ASME Cavitation and Multiphase Flow Forum, Houston, TX.
Eisenhuth, J. J. & Hoffman, G. H. 1981 J. Hydronaut. 15, 90.
Emmons, H. W. 1951 J. Aero. Sci. 18, 490.
Frick, C. W. & McCullough, C. B. 1942 Tests of a heated low drag airfoil. NACA APR.
Gedney, C. J. 1979 Wall pressure fluctuations during transition on a flat plate, MIT Acoustics and Vibration Lab. Rep. 84618–1.Google Scholar
Gentry, A. E. & Wazzan, A. R. 1976 The transition analysis program system. Vol. II—Program formulation and listings. McDonnell Douglas Corp. Rep. MDC J7255-02.Google Scholar
Hall, G. R. 1967 AIAA J. 5, 1386.
Klebanoff, P. S., Shubauer, G. B. & Tidstrom, K. D. 1955 J. Aero. Sci. 22, 803.
Ladd, D. M. & Hendricks, E. W. 1982 Effects of surface roughness and particulates on heated laminar flow. In Proc. Appl. of LDAs to Fluid Mech., Portugal.
Lauchle, G. C. 1979 J. Hydronaut. 13, 61.
Lauchle, G. C. & Crust, J. B. 1980 Particulate distributions in the Garfield Thomas 48-inch diameter water tunnel. The Pennsylvania State University, Appl. Res. Lab. Rep. TM 80–162.Google Scholar
Lauchle, G. C., Eisenhuth, J. J. & Gurney, G. B. 1980 J. Hydronaut. 14, 117.
Lehman, A. F. 1959 The Garfield Thomas Water Tunnel. The Pennsylvania State University, Ordnance Res. Lab. Rep. NOrd 16597–56.Google Scholar
Liepmann, H. W. & Fila, G. H. 1947 Investigations of effects of surface temperature and single roughness elements on boundary layer transition. NACA Rep. 890.Google Scholar
Lowell, R. L. & Reshotko, E. 1974 Numerical study of the stability of a heated boundary layer. Case Western Reserve University Rep. FTAS/TR-73-95.Google Scholar
Lumley, J. L. & McMahon, J. F. 1967 Trans. ASME. D: J. Basic Engng 89, 764.
Reshotko, E. 1976 Ann. Rev. Fluid Mech. 8, 311.
Reshotko, E. 1978 Heated boundary layers. In Proc. 12th Symp. on Naval Hydrodyn., Washington, DC, p. 33.
Robbins, B. E. 1978 J. Hydronaut. 12, 122.
Stinebring, D. R. 1977 Unpublished manuscript.
Strazisar, A. J., Reshotko, E. & Prahl, J. M. 1977 J. Fluid Mech. 83, 225.
Talbot, L., Cheng, R. K., Schefer, R. W. & Willis, D. R. 1980 J. Fluid Mech. 101, 737.
Wazzan, A. R., Okamura, T. T. & Smith, A. M. O. 1968 Trans. ASME C: J. Heat Transfer 90, 109.
Wazzan, A. R., Okamura, T. T. & Smith, A. M. O. 1970 The stability and transition of heated and cooled incompressible boundary layers. In Proc. 4th. Intl Heat Transfer Conf., Paris.
Yao, L.-S. 1977 Entry flow in a heated tube. The Rand Corp., Santa Monica, CA., Rep. R-2111-ARPA.Google Scholar
Yao, L.-S., Catton, I. & McDonough, J. M. 1980 J. Fluid Mech. 98, 417.