Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-09T22:14:23.829Z Has data issue: false hasContentIssue false

Lagrangian transport by breaking surface waves

Published online by Cambridge University Press:  19 September 2017

Luc Deike*
Affiliation:
Department of Mechanical and Aerospace Engineering, Princeton University, NJ 08540, USA Princeton Environmental Institute, Princeton University, NJ 08544, USA Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA 92037, USA
Nick Pizzo
Affiliation:
Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA 92037, USA
W. Kendall Melville*
Affiliation:
Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA 92037, USA
*
Email addresses for correspondence: [email protected], [email protected]
Email addresses for correspondence: [email protected], [email protected]

Abstract

The Lagrangian transport due to non-breaking and breaking focusing wave packets is examined. We present direct numerical simulations of the two-phase air–water Navier–Stokes equations describing focusing wave packets, investigating the Lagrangian drift by tracking tracer particles in the water before, during and after the breaking event. The net horizontal transport for non-breaking focusing packets is well described by the classical Stokes drift, both at the surface and in the bulk of the fluid, where the e-folding scale of the evanescent vertical profile is given by the characteristic wavenumber. For focusing wave packets that lead to breaking, we observe an added drift that can be ten times larger than the classical Stokes drift for a non-breaking packet at the surface, while the initial depth of the broken fluid scales with the wave height at breaking. We find that the breaking induced Lagrangian transport scales with the breaking strength. A simple scaling argument is proposed to describe this added drift and is found to be consistent with the direct numerical simulations. Applications to upper ocean processes are discussed.

Type
Papers
Copyright
© 2017 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Banner, M. L. & Peirson, W. L. 2007 Wave breaking onset and strength for two-dimensional deep-water wave groups. J. Fluid Mech. 585, 93115.Google Scholar
Belcher, S. E., Grant, A. L. M., Hanley, K. E., Fox-Kemper, B., Van Roekel, L., Sullivan, P. P., Large, W. G., Brown, A., Hines, A., Calvert, D. et al. 2012 A global perspective on Langmuir turbulence in the ocean surface boundary layer. Geophys. Res. Lett. 39 (18).Google Scholar
van den Bremer, T. S. & Taylor, P. H. 2016 Lagrangian transport for two-dimensional deep-water surface gravity wave groups. Proc. R. Soc. Lond. A 472 (2192).Google Scholar
Brucker, K. A., O’Shea, T. T., Dommermuth, D. G. & Adams, P. 2010 Three-dimensional simulations of deep-water breaking waves. In 28th Symposium on Naval Hydrodynamics Pasadena, CA, USA.Google Scholar
Cavaleri, L., Fox-Kemper, B. & Hemer, M. 2012 Wind waves in the coupled climate system. Bull. Am. Meteorol. Soc. 93 (11), 16511661.CrossRefGoogle Scholar
Chen, G., Kharif, C., Zaleski, S. & Li, J. 1999 Two dimensionnal Navier–Stokes simulation of breaking waves. Phys. Fluids 11, 121133.Google Scholar
Clamond, D. 2007 On the Lagrangian description of steady surface gravity waves. J. Fluid Mech. 589, 433454.Google Scholar
Clement, A. 1995 Coupling of two absorbing boundary conditions for 2d time-domain simulations of free surface gravity waves. J. Comput. Phys. 126, 139151.Google Scholar
Craik, A. D. D. & Leibovich, S. 1976 A rational model for Langmuir circulations. J. Fluid Mech. 73 (03), 401426.CrossRefGoogle Scholar
Darwin, C. 1953 Note on hydrodynamics. Math. Proc. Camb. Phil. Soc. 49 (02), 342354.CrossRefGoogle Scholar
D’Asaro, E. A. 2014 Turbulence in the upper-ocean mixed layer. Annu. Rev. Mar. Sci. 6, 101115.CrossRefGoogle ScholarPubMed
Deike, L., Lenain, L. & Melville, W. K. 2017 Air entrainment by breaking waves. Geophys. Res. Lett. 44 (8), 37793787.Google Scholar
Deike, L., Melville, W. K. & Popinet, S. 2016 Air entrainment and bubble statistics in breaking waves. J. Fluid Mech. 801, 91129.CrossRefGoogle Scholar
Deike, L., Popinet, S. & Melville, W. K. 2015 Capillary effects on wave breaking. J. Fluid Mech. 769, 541569.CrossRefGoogle Scholar
Derakhti, M. & Kirby, J. T. 2014 Bubble entrainment and liquid–bubble interaction under unsteady breaking waves. J. Fluid Mech. 761, 464506.CrossRefGoogle Scholar
Derakhti, M. & Kirby, J. T. 2016 Breaking-onset, energy and momentum flux in unsteady focused wave packets. J. Fluid Mech. 790, 553581.Google Scholar
Dommermuth, D. G., Yue, D. K. P., Lin, W. M., Rapp, R. J., Chan, E. S. & Melville, W. K. 1988 Deep-water plunging breakers: a comparison between potential theory and experiments. J. Fluid Mech. 189, 423442.Google Scholar
Drazen, D. A. & Melville, W. K. 2009 Turbulence and mixing in unsteady breaking surface waves. J. Fluid Mech. 628, 85119.CrossRefGoogle Scholar
Drazen, D. A., Melville, W. K. & Lenain, L. 2008 Inertial scaling of dissipation in unsteady breaking waves. J. Fluid Mech. 611, 307332.CrossRefGoogle Scholar
Duncan, J. H. 1981 An experimental investigation of breaking waves produced by a towed hydrofoil. Proc. R. Soc. Lond. A 377 (1770), 331348.Google Scholar
Duncan, J. H., Qiao, H. & Philomin, V. 1999 Gentle spilling breakers: crest profile evolution. J. Fluid Mech. 379, 191222.Google Scholar
Eames, I., Belcher, S. E. & Hunt, J. C. R. 1994 Drift, partial drift and darwin’s proposition. J. Fluid Mech. 275, 201223.Google Scholar
Fuster, D., Agbaglah, G., Josserand, C., Popinet, S. & Zaleski, S. 2009 Numerical simulation of droplets, bubbles and waves: state of the art. Fluid Dyn. Res. 41, 065001.Google Scholar
Fuster, D., Matas, J.-P., Marty, S., Popinet, S., Hoepffner, J., Cartellier, A. & Zaleski, S. 2013 Instability regimes in the primary breakup region of planar coflowing sheets. J. Fluid Mech. 736, 150176.Google Scholar
Grare, L., Peirson, W. L., Branger, H., Walker, J. W., Giovanangeli, J.-P. & Makin, V. 2013 Growth and dissipation of wind-forced, deep-water waves. J. Fluid Mech. 722, 550.CrossRefGoogle Scholar
Grue, J. & Kolaas, J. 2017 Experimental particle paths and drift velocity in steep waves at finite water depth. J. Fluid Mech. 810.Google Scholar
Grue, J., Kolaas, J. & Jensen, A. 2014 Velocity fields in breaking-limited waves on finite depth. Eur. J. Mech. (B/Fluids) 47, 97107; enok Palm Memorial Volume.Google Scholar
Haney, S., Fox-Kemper, B., Julien, K. & Webb, A. 2015 Symmetric and geostrophic instabilities in the wave-forced ocean mixed layer. J. Phys. Oceanogr. 45 (12), 30333056.Google Scholar
Iafrati, A. 2011 Energy dissipation mechanisms in wave breaking processes: spilling and highly aerated plunging breaking events. J. Geophys. Res. 116 (C7).Google Scholar
John, F. 1953 Two-dimensional potential flows with a free boundary. Fritz John Collected Papers 2, 487.Google Scholar
Kenyon, K. E. 1969 Stokes drift for random gravity waves. J. Geophys. Res. 74 (28), 69916994.Google Scholar
Kleiss, J. M. & Melville, W. K. 2010 Observations of wave breaking kinematics in fetch-limited seas. J. Phys. Oceanogr. 40 (12), 25752604.Google Scholar
Liu, X. & Duncan, J. H. 2003 The effects of surfactants on spilling breaking waves. Nature 421, 520523.Google Scholar
Loewen, M. R. & Melville, W. K. 1991 Microwave backscatter and acoustic radiation from breaking waves. J. Fluid Mech. 224, 601623.Google Scholar
Longuet-Higgins, M. S. 1953 Mass transport in water waves. Phil. Trans. R. Soc. Lond. A 245 (903), 535581.Google Scholar
Longuet-Higgins, M. S. 1974 Breaking waves in deep or shallow water. In Proc. 10th Conf. on Naval Hydrodynamics, vol. 597.Google Scholar
Longuet-Higgins, M. S. & Stewart, R. W. 1964 Radiation stresses in water waves; a physical discussion, with applications. In Deep Sea Research and Oceanographic Abstracts, vol. 11, pp. 529562. Elsevier.Google Scholar
Mcintyre, M. E. 1981 On the wave momentum myth. J. Fluid Mech. 106, 331347.Google Scholar
McWilliams, J. C. 2016 Submesoscale currents in the ocean. Proc. R. Soc. Lond. A 472 (2189).Google ScholarPubMed
McWilliams, J. C. & Restrepo, J. M. 1999 The wave-driven ocean circulation. J. Phys. Oceanogr. 29 (10), 25232540.2.0.CO;2>CrossRefGoogle Scholar
Melville, W. K. 1994 Energy dissipation by breaking waves. J. Phys. Oceanogr. 24 (10), 20412049.Google Scholar
Melville, W. K. & Rapp, R. J. 1988 The surface velocity field in steep and breaking waves. J. Fluid Mech. 189, 122.CrossRefGoogle Scholar
Melville, W. K. 1996 The role of surface wave breaking in air–sea interaction. Annu. Rev. Fluid Mech. 28, 279321.Google Scholar
Melville, W. K. & Rapp, D. J. 1985 Momentum flux in breaking waves. Nature 317, 514516.Google Scholar
Monismith, S. G., Cowen, E. A., Nepf, H. M., Magnaudet, J. & Thais, L. 2007 Laboratory observations of mean flows under surface gravity waves. J. Fluid Mech. 573, 131147.Google Scholar
Perlin, M., Choi, W. & Tian, Z. 2013 Breaking waves in deep and intermediate waters. Annu. Rev. Fluid Mech. 45, 115145.Google Scholar
Phillips, O. M. 1977 The Dynamics of the Upper Ocean. Cambridge University Press.Google Scholar
Phillips, O. M. 1985 Spectral and statistical properties of the equilibrium range in wind-generated gravity waves. J. Fluid Mech. 156 (1), 505531.Google Scholar
Pizzo, N. E.2015, Properties of nonlinear and breaking deep-water surface waves. PhD thesis, University of California, San Diego.Google Scholar
Pizzo, N., Deike, L. & Melville, W. K. 2016 Current generation by deep-water breaking waves. J. Fluid Mech. 803, 275291.Google Scholar
Pizzo, N. E. & Melville, W. K. 2013 Vortex generation by deep-water breaking waves. J. Fluid Mech. 734, 198218.Google Scholar
Pizzo, N. E. & Melville, W. K. 2016 Wave modulation: the geometry, kinematics, and dynamics of surface-wave packets. J. Fluid Mech. 803, 292312.Google Scholar
Pizzo, N. E. 2017 Surfing surface gravity waves. J. Fluid Mech. 823, 316328.Google Scholar
Popinet, S. 2003 Gerris: a tree-based adaptative solver for the incompressible Euler equations in complex geometries. J. Comput. Phys. 190, 572600.CrossRefGoogle Scholar
Popinet, S. 2009 An accurate adaptative solver for surface-tension-driven interfacial flows. J. Comput. Phys. 228, 58385866.Google Scholar
Rapp, R. J. & Melville, W. K. 1990 Laboratory measurements of deep-water breaking waves. Phil. Trans. R. Soc. Lond. A 331, 735800.Google Scholar
Romero, L., Melville, W. K. & Kleiss, J. M. 2012 Spectral energy dissipation due to surface wave breaking. J. Phys. Oceanogr. 42, 14211441.Google Scholar
Sclavounos, P. D. 2005 Nonlinear particle kinematics of ocean waves. J. Fluid Mech. 540, 133142.Google Scholar
Stokes, G. G. 1847 On the theory of oscillatory waves. Trans. Camb. Phil. Soc. 8, 441473.Google Scholar
Sullivan, P. P. & McWilliams, J. C. 2010 Dynamics of winds and currents coupled to surface waves. Annu. Rev. Fluid Mech. 42.Google Scholar
Sutherland, P. & Melville, W. K. 2013 Field measurements and scaling of ocean surface wave-breaking statistics. Geophys. Res. Lett. 40 (12), 30743079.Google Scholar
Sutherland, P. & Melville, W. K. 2015 Field measurements of surface and near-surface turbulence in the presence of breaking waves. J. Phys. Oceanogr. (45), 943966.CrossRefGoogle Scholar
Tian, Z., Perlin, M. & Choi, W. 2010 Energy dissipation in two-dimensional unsteady plunging breakers and an eddy viscosity model. J. Fluid Mech. 655, 217257.Google Scholar
Tian, Z., Perlin, M. & Choi, W. 2012 An eddy viscosity model for two-dimensional breaking waves and its validation with laboratory experiments. Phys. Fluids 24 (3), 036601.Google Scholar
Tomar, G., Fuster, D., Zaleski, S. & Popinet, S. 2010 Multiscale simulations of primary atomization. Comput. Fluids 39 (10), 18641874.Google Scholar
Trulsen, K. 2006 Weakly nonlinear and stochastic properties of ocean wave fields. Application to an extreme wave event. In Waves in Geophysical Fluidssunamis, Rogue Waves, Internal Waves and Internal Tides, pp. 49106.Google Scholar
Vinje, T. & Brevig, P. 1981 Numerical simulation of breaking waves. Adv. Water Resour. 4 (2), 7782.CrossRefGoogle Scholar