Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-09T21:59:18.211Z Has data issue: false hasContentIssue false

Lagrangian measurements of inertial particle accelerations in a turbulent boundary layer

Published online by Cambridge University Press:  25 December 2008

S. GERASHCHENKO
Affiliation:
Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY 14853, USA and International Collaboration for Turbulence Research
N. S. SHARP
Affiliation:
Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY 14853, USA and International Collaboration for Turbulence Research
S. NEUSCAMMAN
Affiliation:
Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY 14853, USA and International Collaboration for Turbulence Research
Z. WARHAFT*
Affiliation:
Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY 14853, USA and International Collaboration for Turbulence Research
*
Email address for correspondence: [email protected]

Abstract

Two-dimensional Lagrangian acceleration statistics of inertial particles in a turbulent boundary layer with free-stream turbulence are determined by means of a particle tracking technique using a high-speed camera moving along the side of the wind tunnel at the mean flow speed. The boundary layer is formed above a flat plate placed horizontally in the tunnel, and water droplets are fed into the flow using two different methods: sprays placed downstream from an active grid, and tubes fed into the boundary layer from humidifiers. For the flow conditions studied, the sprays produce Stokes numbers varying from 0.47 to 1.2, and the humidifiers produce Stokes numbers varying from 0.035 to 0.25, where the low and high values refer to the outer boundary layer edge and the near-wall region, respectively. The Froude number is approximately 1.0 for the sprays and 0.25 for the humidifiers, with a small variation within the boundary layer. The free-stream turbulence is varied by operating the grid in the active mode as well as a passive mode (the latter behaves as a conventional grid). The boundary layer momentum-thickness Reynolds numbers are 840 and 725 for the active and passive grid respectively. At the outer edge of the boundary layer, where the shear is weak, the acceleration probability density functions are similar to those previously observed in isotropic turbulence for inertial particles. As the boundary layer plate is approached, the tails of the probability density functions narrow, become negatively skewed, and their peak occurs at negative accelerations (decelerations in the streamwise direction). The mean deceleration and its root mean square (r.m.s.) increase to large values close to the plate. These effects are more pronounced at higher Stokes number. In the vertical direction, there is a slight downward mean deceleration and its r.m.s., which is lower in magnitude than that of the streamwise component, peaks in the buffer region. Although there are free-stream turbulence effects, and the complex boundary layer structure plays an important role, a simple model suggests that the acceleration behaviour is dominated by shear, gravity and inertia. The results are contrasted with inertial particles in isotropic turbulence and with fluid particle acceleration statistics in a boundary layer. The background velocity field is documented by means of hot-wire anemometry and laser Doppler velocimetry measurements. These appear to be the first Lagrangian acceleration measurements of inertial particles in a shear flow.

Type
Papers
Copyright
Copyright © Cambridge University Press 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Aliseda, A., Cartellier, A., Hainaux, F. & Lasheras, J. C. 2002 Effect of preferential concentration on the settling velocity of heavy particles in homogeneous isotropic turbulence. J. Fluid Mech. 468, 77105.CrossRefGoogle Scholar
Ayyalasomayajula, S.Collins, L. R. & Warhaft, Z. 2008 Modelling inertial particle Lagrangian acceleration statistics in turbulent flows. Phys. Fluids 20, 095104.CrossRefGoogle Scholar
Ayyalasomayajula, S., Gylfason, A., Collins, L. R., Bodenschatz, E. & Warhaft, Z. 2006 Lagrangian measurements of inertial particle accelerations in grid generated wind tunnel turbulence. Phys. Rev. Lett. 97, 144507.CrossRefGoogle ScholarPubMed
Bec, J., Biferale, L.Boffetta, G., Celani, A., Cencini, M., Lanotte, A., Musacchio, S. & Toschi, F. 2006 Acceleration statistics of heavy particles in turbulence. J. Fluid Mech. 550, 349358.Google Scholar
Bourgoin, M., Ouellette, N. T., Xu, H. T., Berg, J. & Bodenschatz, E. 2006 The role of pair dispersion in turbulent flow. Science. 311, 835838.CrossRefGoogle ScholarPubMed
Brooke, J. W., Kontomaris, K., Hanratty, T. J. & McLaughlin, J. B. 1992 Turbulent deposition and trapping of aerosols at a wall. Phys. Fluids A. 4, 825834.Google Scholar
Chen, L., Goto, S. & Vassilicos, J. C. 2006 Turbulent clustering of stagnation points and inertial particles. J. Fluid Mech. 553, 143154.Google Scholar
Choi, J., Yeo, K. & Lee, C. 2004 a Intermittent nature of acceleration in near wall turbulence. Phys. Rev. Lett. 92, 144502.Google Scholar
Choi, J., Yeo, K. & Lee, C. 2004 b Lagrangian statistics in turbulent channel flow. Phys. Fluids 16, 779793.CrossRefGoogle Scholar
Christensen, K. T. & Adrian, R. J. 2002 Measurement of instantaneous Eulerian acceleration fields by particle-image velocimetry: method and accuracy. Exps. Fluids 33, 759769.Google Scholar
Chun, J. H., Koch, D. L., Rani, S. L., Ahluwalia, A. & Collins, L. R. 2005 Clustering of aerosol particles in isotropic turbulence. J. Fluid Mech. 536, 219251.CrossRefGoogle Scholar
DeGraaff, D. B. & Eaton, J. K. 2000 Reynolds-number scaling of the flat-plate turbulent boundary layer. J. Fluid Mech. 422, 319346.Google Scholar
Dong, P., Hsu, T. Y., Atsavapranee, P. & Wei, T. 2001 Digital particle image accelerometry. Exps. Fluids 30, 626632.CrossRefGoogle Scholar
Elghobashi, S. & Truesdell, G. C. 1992 Direct simulation of particle dispersion in a decaying isotropic turbulence. J. Fluid Mech. 242, 655700.CrossRefGoogle Scholar
Elperin, T., Kleeorin, N., L'vov, V. S., Rogachevskii, I. & Sokoloff, D. 2002 Clustering instability of the spatial distribution of inertial particles in turbulent flows. Phys. Rev. E 66, 036302.Google ScholarPubMed
Friedlander, S. K. & Johnstone, H. F. 1957 Deposition of suspended particles from turbulent gas streams. Indust. Engng Chem. 49, 11511156.CrossRefGoogle Scholar
Fuchs, W., Nobach, H. & Tropea, C. 1994 Laser Doppler anemometry data simulation: application to investigate the accuracy of statistical estimators. AIAA J. 32, 18831889.Google Scholar
Ghosh, S., Davila, J., Hunt, J. C. R., Srdic, A., Fernando, H. J. S. & Jonas, P. R. 2005 How turbulence enhances coalescence of settling particles with applications to rain in clouds. Proc. R. Soc. Lond. A. 461, 30593088.Google Scholar
Goto, S. & Vassilicos, J. C. 2008 Sweep-stick mechanism of heavy particle clustering in fluid turbulence. Phys. Rev. Lett. 100, 054503.Google Scholar
Gulitski, G., Kholmyansky, M., Kinzelbach, W., Luthi, B., Tsinober, A. & Yorish, S. 2007 Velocity and temperature derivatives in high Reynolds number turbulent flows in the atmospheric surface layer. Part 2. Acceleration and related matters. J. Fluid Mech. 589, 83102.CrossRefGoogle Scholar
Gylfason, A. 2006 Particles, passive scalars, and the small scale structure of turbulence. PhD Thesis. Mechanical and Aerospace Engineering, Cornell University.Google Scholar
Gylfason, A., Ayyalasomayajula, S. & Warhaft, Z. 2004 Intermittency, pressure and acceleration statistics from hot-wire measurements in wind-tunnel turbulence. J. Fluid Mech. 501, 213229.CrossRefGoogle Scholar
Hancock, P. E. & Bradshaw, P. 1989 Turbulence structure of a boundary layer beneath a turbulent free stream. J. Fluid Mech. 205, 4576.CrossRefGoogle Scholar
Hill, R. J. & Wilczak, J. M. 1995 Pressure structure functions and spectra for locally isotropic turbulence. J. Fluid Mech. 296, 247269.CrossRefGoogle Scholar
Jakobsen, M. L., Dewhirst, T. P. & Greated, C. A. 1997 Particle image velocimetry for predictions of acceleration fields and force within fluid flows. Meas. Sci. Technol. 8, 15021516.Google Scholar
Jensen, A., Sveen, J. K., Grue, J., Richon, J. B. & Gray, C. 2001 Accelerations in water waves by extended particle image velocimetry. Exps. Fluids 30, 500510.Google Scholar
Kaftori, D., Hetsroni, G. & Banerjee, S. 1995 a Particle behavior in the turbulent boundary layer. Part I: Motion, deposition, and entrainment. Phys. Fluids 7, 10951106.CrossRefGoogle Scholar
Kaftori, D., Hetsroni, G. & Banerjee, S. 1995 b Particle behavior in the turbulent boundary layer. Part II: Velocity and distribution profiles. Phys. Fluids 7, 10071121.Google Scholar
Kinzel, M., Nobach, H., Tropea, C. & Bodenschatz, E. 2006 Measurement of Lagrangian acceleration using the laser Doppler technique. Proc. 13th Intl Symp. on Applications of Laser Techniques to Fluid Mechanics, June 26–29, Lisbon, Portugal.Google Scholar
Kulick, J., Fessler, J. R. & Eaton, J. K. 1994 Particle response and turbulence modification in fully developed channel flow. J. Fluid Mech. 277, 109134.Google Scholar
Lehmann, B., Nobach, H. & Tropea, C. 2002 Measurement of acceleration using the laser Doppler technique. Meas. Sci. Technol. 13, 13671381.CrossRefGoogle Scholar
Lehmann, K., Siebert, H., Wendisch, M. & Shaw, R. 2007 Evidence for inertial droplet clustering in weakly turbulent clouds. Tellus B 59, (1), 5765.CrossRefGoogle Scholar
Liu, X. & Katz, J. 2006 Instantaneous pressure and material acceleration measurements using a four-exposure PIV system. Exps. Fluids 41, 227240.Google Scholar
Lowe, T. K. & Simpson, R. L. 2006 Measurements of velocity-acceleration statistics in turbulent boundary layers. Intl J. Heat Fluid Flow 27, 558565.Google Scholar
Makita, H. 1991 Realization of a large-scale turbulence field in a small wind-tunnel. Fluid Dyn. Res. 8, 5364.Google Scholar
Marchioli, C. & Soldati, A. 2002 Mechanisms for particle transfer and segregation in a turbulent boundary layer. J. Fluid. Mech. 468, 283315.Google Scholar
Maxey, M. R. 1987 The gravitational settling of aerosol particles in homogeneous turbulence and random flow fields. J. Fluid Mech. 174, 441465.CrossRefGoogle Scholar
Maxey, M. R. & Riley, J. J. 1983 Equation of motion for a small rigid sphere in a non-uniform flow. Phys. Fluids 26, 883889.Google Scholar
Mordant, N., Crawford, A. & Bodenschatz, E. 2004 Experimental lagrangian acceleration probability density function measurements. Physica D 193, 245251.Google Scholar
Mordant, N., Metz, P., Michel, O. & Pinton, J. F. 2001. Measurement of Lagrangian velocity in fully developed turbulence. Phys. Rev. Lett. 87, 214501.CrossRefGoogle ScholarPubMed
Mydlarski, L. & Warhaft, Z. 1996 On the onset of high-Reynolds-number grid-generated wind tunnel turbulence. J. Fluid Mech. 320, 331368.Google Scholar
Ouellette, N. T., Xu, H. & Bodenschatz, E. 2006 a A quantitative study of three-dimensional Lagrangian particle tracking algorithms. Exps Fluids 40, 301313.CrossRefGoogle Scholar
Ouellette, N. T., Xu, H., Bourgoin, M. & Bodenschatz, E. 2006 b Small-scale anisotropy in Lagrangian turbulence. New J. Phys. 8, 102111.CrossRefGoogle Scholar
Pan, Y. & Banerjee, S. 1996 Numerical simulation of particle interactions with wall turbulence. Phys. Fluids 8, 27332755.Google Scholar
Post, S. L. & Abraham, J. 2002 Modeling the outcome of drop-drop collisions in Diesel sprays. Intl J. Multiphase Flow 28, 9971019.CrossRefGoogle Scholar
Qureshi, N. M., Bourgoin, M., Baudet, C., Cartellier, A. & Gagne, Y. 2007 Turbulent transport of material particles: An experimental study of finite size effects. Phys. Rev. Lett. 99, 184502.CrossRefGoogle ScholarPubMed
Rouson, D. W. I. & Eaton, J. K. 2001 On the preferential concentration of solid particles in turbulent channel flow. J. Fluid Mech. 428, 149169.Google Scholar
Salazar, J. P. L. C., de Jong, J., Cao, L., Woodward, S., Meng, H. & Collins, L. R. 2008 Experimental and numerical investigation of inertial particle clustering in isotropic turbulence. J. Fluid Mech. 600, 245256.CrossRefGoogle Scholar
Saw, E. W., Shaw, R., Ayyalasomayajula, S., Chuang, P. Y. & Gylfason, A. 2008 Inertial Clustering of Particles in High-Reynolds-Number Turbulence. Phys. Rev. Lett. 100, 214501.Google Scholar
Seuront, L. & Schmitt, F. G. 2004 Eulerian and Lagrangian properties of biophysical intermittency in the ocean. Geophys. Res. Lett. 31, L03306.Google Scholar
Shaw, R. A. 2003 Particle-turbulence interactions in atmospheric clouds. Annu. Rev. Fluid Mech. 35, 183227.Google Scholar
Shen, X. & Warhaft, Z. 2000 The anisotropy of the small scale structure in high Reynolds number (R-lambda similar to 1000) turbulent shear flow. Phys. Fluids. 12, 29762989.Google Scholar
Squires, K. D. & Eaton, J. K. 1991 Preferential concentration of particles by turbulence. Phys. Fluids A 3, 11691178.Google Scholar
Sundaram, S. & Collins, L. R. 1997 Collision statistics in an isotropic particle-laden turbulent suspension. Part 1. Direct numerical simulations. J. Fluid Mech. 335, 75109.Google Scholar
Thole, K. A. & Bogard, D. G. 1996 High free stream turbulence effects on turbulent boundary layers. J. Fluids Engng 118, 276284.CrossRefGoogle Scholar
Toschi, F. & E Bodenschatz, E. 2009 Lagrangian properties of turbulence. Annu. Rev. Fluid Mech. (in press).CrossRefGoogle Scholar
Tsuji, Y., Fransson, J. H. M., Alfredsson, P. H. & Johansson, A. V. 2007 Pressure statistics and their scaling in high-Reynolds-number turbulent boundary layer. J. Fluid Mech. 585, 140.Google Scholar
Volk, R., Mordant, N., Verhille, G. & Pinton, J. F. 2008 Laser Doppler measurement of inertial particle and bubble accelerations in turbulence. Europhys. Lett. 81, 34002.Google Scholar
Voth, G. A., La Porta, A., Crawford, A. M., Alexander, J. & Bodenschatz, E. 2002 Measurement of particle accelerations in fully developed turbulence. J. Fluid Mech. 469, 121160.CrossRefGoogle Scholar
Wood, A. M., Hwang, W. & Eaton, J. K. 2005 Preferential concentration of particles in homogeneous and isotropic turbulence. Intl J. Multiphase Flow 31, 12201230.CrossRefGoogle Scholar
Xu, H. & Bodenschatz, E. 2008 Motion of inertial particles with size larger than the Komogorov scale in turbulent flows. Physica D. doi:10.1016/j.physd.2008.04.022Google Scholar
Xu, H., Bourgoin, M., Ouellette, N. T. & Bodenschatz, E. 2006 High order Lagrangian velocity statistics in turbulence. Phys. Rev. Lett. 96, 024503.CrossRefGoogle ScholarPubMed
Xu, H., Ouellette, N. T. & Bodenschatz, E. 2008 Evolution of geometric structures in intense turbulence. New J. Phys. 10, 013012.Google Scholar
Young, J. & Leeming, A. 1997 A theory of particle deposition in a turbulent pipe flow. J. Fluid Mech. 340, 129159.Google Scholar