Hostname: page-component-586b7cd67f-vdxz6 Total loading time: 0 Render date: 2024-11-26T20:38:56.509Z Has data issue: false hasContentIssue false

Lagrangian dynamics and heat transfer in porous-media convection

Published online by Cambridge University Press:  28 April 2021

Shuang Liu
Affiliation:
Center for Combustion Energy, Key Laboratory for Thermal Science and Power Engineering of Ministry of Education, Department of Energy and Power Engineering, Key Laboratory of Advanced Reactor Engineering and Safety of Ministry of Education, Tsinghua University, Beijing100084, PR China
Linfeng Jiang
Affiliation:
Center for Combustion Energy, Key Laboratory for Thermal Science and Power Engineering of Ministry of Education, Department of Energy and Power Engineering, Key Laboratory of Advanced Reactor Engineering and Safety of Ministry of Education, Tsinghua University, Beijing100084, PR China
Cheng Wang
Affiliation:
Center for Combustion Energy, Key Laboratory for Thermal Science and Power Engineering of Ministry of Education, Department of Energy and Power Engineering, Key Laboratory of Advanced Reactor Engineering and Safety of Ministry of Education, Tsinghua University, Beijing100084, PR China
Chao Sun*
Affiliation:
Center for Combustion Energy, Key Laboratory for Thermal Science and Power Engineering of Ministry of Education, Department of Energy and Power Engineering, Key Laboratory of Advanced Reactor Engineering and Safety of Ministry of Education, Tsinghua University, Beijing100084, PR China Department of Engineering Mechanics, School of Aerospace Engineering, Tsinghua University, Beijing100084, PR China
*
Email address for correspondence: [email protected]

Abstract

We report a numerical study of Rayleigh–Bénard convection through random porous media using pore-scale modelling, focusing on the Lagrangian dynamics of fluid particles and heat transfer for varied porosities $\phi$. Due to the interaction between the porous medium and the coherent flow structures, the flow is found to be highly heterogeneous, consisting of convection channels with strong flow strength and stagnant regions with low velocities. The modifications of flow field due to porous structure have a significant influence on the dynamics of fluid particles. Evaluation of the particle displacement along the trajectory reveals the emergence of anomalous transport for long times as $\phi$ is decreased, which is associated with the long-time correlation of Lagrangian velocity of the fluid. As porosity is decreased, the cross-correlation between the vertical velocity and temperature fluctuation is enhanced, which reveals a mechanism to enhance the heat transfer in porous-media convection.

Type
JFM Papers
Copyright
© The Author(s), 2021. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Alim, K., Parsa, S., Weitz, D.A. & Brenner, M.P. 2017 Local pore size correlations determine flow distributions in porous media. Phys. Rev. Lett. 119 (14), 144501.CrossRefGoogle ScholarPubMed
de Anna, P., Quaife, B., Biros, G. & Juanes, R. 2017 Prediction of the low-velocity distribution from the pore structure in simple porous media. Phys. Rev. Fluids 2 (12), 124103.CrossRefGoogle Scholar
Ardekani, M.N., Abouali, O., Picano, F. & Brandt, L. 2018 a Heat transfer in laminar Couette flow laden with rigid spherical particles. J. Fluid Mech. 834, 308334.CrossRefGoogle Scholar
Ardekani, M.N., Al Asmar, L., Picano, F. & Brandt, L. 2018 b Numerical study of heat transfer in laminar and turbulent pipe flow with finite-size spherical particles. Intl J. Heat Fluid Flow 71, 189199.CrossRefGoogle Scholar
Batchelor, G.K. 1950 The application of the similarity theory of turbulence to atmospheric diffusion. Q. J. R. Meteor. Soc. 76 (328), 133146.CrossRefGoogle Scholar
Bear, J. 1972 Dynamics of Fluids in Porous Media. American Elsevier.Google Scholar
Berkowitz, B., Cortis, A., Dentz, M. & Scher, H. 2006 Modeling non-Fickian transport in geological formations as a continuous time random walk. Rev. Geophys. 44 (2), RG2003.CrossRefGoogle Scholar
Biferale, L., Boffetta, G., Celani, A., Devenish, B.J., Lanotte, A. & Toschi, F. 2004 Multifractal statistics of Lagrangian velocity and acceleration in turbulence. Phys. Rev. Lett. 93 (6), 064502.CrossRefGoogle ScholarPubMed
Bijeljic, B. & Blunt, M.J. 2006 Pore-scale modeling and continuous time random walk analysis of dispersion in porous media. Water Resour. Res. 42 (1), W01202.CrossRefGoogle Scholar
Bijeljic, B., Mostaghimi, P. & Blunt, M.J. 2011 Signature of non-Fickian solute transport in complex heterogeneous porous media. Phys. Rev. Lett. 107 (20), 204502.CrossRefGoogle ScholarPubMed
Bijeljic, B., Raeini, A., Mostaghimi, P. & Blunt, M.J. 2013 Predictions of non-Fickian solute transport in different classes of porous media using direct simulation on pore-scale images. Phys. Rev. E 87 (1), 013011.CrossRefGoogle ScholarPubMed
Bouchaud, J.-P. 2008 Anomalous relaxation in complex systems: from stretched to compressed exponentials. In Anomalous Transport: Foundations and Applications (ed. R. Klages, G. Radons & I.M. Sokolov), chap. 11, pp. 327–345. John Wiley & Sons.CrossRefGoogle Scholar
Bourgoin, M. 2015 Turbulent pair dispersion as a ballistic cascade phenomenology. J. Fluid Mech. 772, 678704.CrossRefGoogle Scholar
Breugem, W.-P. 2012 A second-order accurate immersed boundary method for fully resolved simulations of particle-laden flows. J. Comput. Phys. 231 (13), 44694498.CrossRefGoogle Scholar
Calzavarini, E., Jiang, L.-F. & Sun, C. 2020 Anisotropic particles in two-dimensional convective turbulence. Phys. Fluids 32 (2), 023305.CrossRefGoogle Scholar
Chong, K.L. & Xia, K.-Q. 2016 Exploring the severely confined regime in Rayleigh–Bénard convection. J. Fluid Mech. 805, R4.CrossRefGoogle Scholar
Cushman, J.H. & Tartakovsky, D.M. 2016 The Handbook of Groundwater Engineering. CRC Press.CrossRefGoogle Scholar
De Anna, P., Le Borgne, T., Dentz, M., Tartakovsky, A.M., Bolster, D. & Davy, P. 2013 Flow intermittency, dispersion, and correlated continuous time random walks in porous media. Phys. Rev. Lett. 110 (18), 184502.CrossRefGoogle ScholarPubMed
De Paoli, M., Alipour, M. & Soldati, A. 2020 How non-Darcy effects influence scaling laws in Hele-Shaw convection experiments. J. Fluid Mech. 892, A41.CrossRefGoogle Scholar
Dentz, M., Icardi, M. & Hidalgo, J.J. 2018 Mechanisms of dispersion in a porous medium. J. Fluid Mech. 841, 851882.CrossRefGoogle Scholar
Dentz, M., Kang, P.K., Comolli, A., Le Borgne, T. & Lester, D.R. 2016 Continuous time random walks for the evolution of Lagrangian velocities. Phys. Rev. Fluids 1 (7), 074004.CrossRefGoogle Scholar
Emami-Meybodi, H., Hassanzadeh, H. & Ennis-King, J. 2015 CO2 dissolution in the presence of background flow of deep saline aquifers. Water Resour. Res. 51 (4), 25952615.CrossRefGoogle Scholar
Falkovich, G., Gawedzki, K. & Vergassola, M. 2001 Particles and fields in fluid turbulence. Rev. Mod. Phys. 73 (4), 913975.CrossRefGoogle Scholar
Gasow, S., Lin, Z., Zhang, H.C., Kuznetsov, A.V., Avila, M. & Jin, Y. 2020 Effects of pore scale on the macroscopic properties of natural convection in porous media. J. Fluid Mech. 891, A25.CrossRefGoogle Scholar
Gjetvaj, F., Russian, A., Gouze, P. & Dentz, M. 2015 Dual control of flow field heterogeneity and immobile porosity on non-Fickian transport in Berea sandstone. Water Resour. Res. 51 (10), 82738293.CrossRefGoogle Scholar
Grossmann, S. 1990 Diffusion by turbulence. Ann. Phys. 502 (7), 577582.CrossRefGoogle Scholar
Gu, L., Zhao, X.-X., Xing, L.-H., Jiao, Z.-N., Hua, Z.-L. & Liu, X.-D. 2019 Longitudinal dispersion coefficients of pollutants in compound channels with vegetated floodplains. J. Hydrodyn. 31 (4), 740749.CrossRefGoogle Scholar
Hewitt, D.R. 2020 Vigorous convection in porous media. Proc. R. Soc. Lond. A 476 (2239), 20200111.Google ScholarPubMed
Hidalgo, J.J. & Carrera, J. 2009 Effect of dispersion on the onset of convection during CO2 sequestration. J. Fluid Mech. 640, 441452.CrossRefGoogle Scholar
Holzner, M., Morales, V.L., Willmann, M. & Dentz, M. 2015 Intermittent Lagrangian velocities and accelerations in three-dimensional porous medium flow. Phys. Rev. E 92 (1), 013015.CrossRefGoogle ScholarPubMed
Huppert, H.E. & Neufeld, J.A. 2014 The fluid mechanics of carbon dioxide sequestration. Annu. Rev. Fluid Mech. 46, 255272.CrossRefGoogle Scholar
Johnston, D.C. 2006 Stretched exponential relaxation arising from a continuous sum of exponential decays. Phys. Rev. B 74 (18), 184430.CrossRefGoogle Scholar
Kang, P.K., De Anna, P., Nunes, J.P., Bijeljic, B., Blunt, M.J. & Juanes, R. 2014 Pore-scale intermittent velocity structure underpinning anomalous transport through 3-D porous media. Geophys. Res. Lett. 41 (17), 61846190.CrossRefGoogle Scholar
Kubo, R., Toda, M. & Hashitsume, N. 2012 Statistical Physics II: Nonequilibrium Statistical Mechanics. Springer Science & Business Media.Google Scholar
Lester, D.R., Metcalfe, G. & Trefry, M.G. 2014 Anomalous transport and chaotic advection in homogeneous porous media. Phys. Rev. E 90 (6), 063012.CrossRefGoogle ScholarPubMed
Liu, S., Jiang, L.-F., Chong, K.L., Zhu, X.-J., Wan, Z.-H., Verzicco, R., Stevens, R.J.A.M., Lohse, D. & Sun, C. 2020 From Rayleigh–Bénard convection to porous-media convection: how porosity affects heat transfer and flow structure. J. Fluid Mech. 895, A18.CrossRefGoogle Scholar
Manke, I., Hartnig, C., Grünerbel, M., Lehnert, W., Kardjilov, N., Haibel, A., Hilger, A., Banhart, J. & Riesemeier, H. 2007 Investigation of water evolution and transport in fuel cells with high resolution synchrotron x-ray radiography. Appl. Phys. Lett. 90 (17), 174105.CrossRefGoogle Scholar
Mathai, V., Huisman, S.G., Sun, C., Lohse, D. & Bourgoin, M. 2018 Dispersion of air bubbles in isotropic turbulence. Phys. Rev. Lett. 121 (5), 054501.CrossRefGoogle ScholarPubMed
Mathai, V., Lohse, D. & Sun, C. 2020 Bubbly and buoyant particle-laden turbulent flows. Annu. Rev. Conden. Ma. P. 11, 529559.CrossRefGoogle Scholar
Metzler, R. & Klafter, J. 2000 The random walk's guide to anomalous diffusion: a fractional dynamics approach. Phys. Rep. 339 (1), 177.CrossRefGoogle Scholar
Morales, V.L., Dentz, M., Willmann, M. & Holzner, M. 2017 Stochastic dynamics of intermittent pore-scale particle motion in three-dimensional porous media: experiments and theory. Geophys. Res. Lett. 44 (18), 93619371.CrossRefGoogle Scholar
Nield, D.A. & Bejan, A. 2006 Convection in Porous Media. Springer.Google Scholar
Nissan, A. & Berkowitz, B. 2018 Inertial effects on flow and transport in heterogeneous porous media. Phys. Rev. Lett. 120 (5), 054504.CrossRefGoogle ScholarPubMed
van der Poel, E.P., Ostilla-Mónico, R., Donners, J. & Verzicco, R. 2015 A pencil distributed finite difference code for strongly turbulent wall-bounded flows. Comput. Fluids 116, 1016.CrossRefGoogle Scholar
Puyguiraud, A., Gouze, P. & Dentz, M. 2019 a Stochastic dynamics of Lagrangian pore-scale velocities in three-dimensional porous media. Water Resour. Res. 55 (2), 11961217.CrossRefGoogle Scholar
Puyguiraud, A., Gouze, P. & Dentz, M. 2019 b Upscaling of anomalous pore-scale dispersion. Trans. Porous Med. 128 (2), 837855.CrossRefGoogle Scholar
Richardson, L.F. 1926 Atmospheric diffusion shown on a distance-neighbour graph. Proc. R. Soc. Lond. A 110 (756), 709737.Google Scholar
Salazar, J.P.L.C. & Collins, L.R. 2009 Two-particle dispersion in isotropic turbulent flows. Annu. Rev. Fluid Mech. 41, 405432.CrossRefGoogle Scholar
Sardina, G., Brandt, L., Boffetta, G. & Mazzino, A. 2018 Buoyancy-driven flow through a bed of solid particles produces a new form of Rayleigh–Taylor turbulence. Phys. Rev. Lett. 121 (22), 224501.CrossRefGoogle Scholar
Seymour, J.D., Gage, J.P., Codd, S.L. & Gerlach, R. 2004 Anomalous fluid transport in porous media induced by biofilm growth. Phys. Rev. Lett. 93 (19), 198103.CrossRefGoogle ScholarPubMed
Shishkina, O., Stevens, R.J.A.M., Grossmann, S. & Lohse, D. 2010 Boundary layer structure in turbulent thermal convection and its consequences for the required numerical resolution. New J. Phys. 12 (7), 075022.CrossRefGoogle Scholar
Souzy, M., Lhuissier, H., Méheust, Y., Le Borgne, T. & Metzger, B. 2020 Velocity distributions, dispersion and stretching in three-dimensional porous media. J. Fluid Mech. 891, A16.CrossRefGoogle Scholar
Spandan, V., Lohse, D., de Tullio, M.D. & Verzicco, R. 2018 A fast moving least squares approximation with adaptive Lagrangian mesh refinement for large scale immersed boundary simulations. J. Comput. Phys. 375, 228239.CrossRefGoogle Scholar
Spandan, V., Meschini, V., Ostilla-Mónico, R., Lohse, D., Querzoli, G., de Tullio, M.D. & Verzicco, R. 2017 A parallel interaction potential approach coupled with the immersed boundary method for fully resolved simulations of deformable interfaces and membranes. J. Comput. Phys. 348, 567590.CrossRefGoogle Scholar
Taghizadeh, E., Valdés-Parada, F.J. & Wood, B.D. 2020 Preasymptotic Taylor dispersion: evolution from the initial condition. J. Fluid Mech. 889, A5.CrossRefGoogle Scholar
Toschi, F. & Bodenschatz, E. 2009 Lagrangian properties of particles in turbulence. Annu. Rev. Fluid Mech. 41, 375404.CrossRefGoogle Scholar
de Tullio, M.D. & Pascazio, G. 2016 A moving-least-squares immersed boundary method for simulating the fluid–structure interaction of elastic bodies with arbitrary thickness. J. Comput. Phys. 325, 201225.CrossRefGoogle Scholar
Uhlmann, M. 2005 An immersed boundary method with direct forcing for the simulation of particulate flows. J. Comput. Phys. 209 (2), 448476.CrossRefGoogle Scholar
Vanella, M. & Balaras, E. 2009 Short note: a moving-least-squares reconstruction for embedded-boundary formulations. J. Comput. Phys. 228 (18), 66176628.CrossRefGoogle Scholar
Verzicco, R. & Orlandi, P. 1996 A finite-difference scheme for three-dimensional incompressible flows in cylindrical coordinates. J. Comput. Phys. 123 (2), 402414.CrossRefGoogle Scholar
Wen, B.-L., Chang, K.W. & Hesse, M.A. 2018 Rayleigh-Darcy convection with hydrodynamic dispersion. Phys. Rev. Fluids 3 (12), 123801.CrossRefGoogle Scholar
Wood, B.D., He, X.-L. & Apte, S.V. 2020 Modeling turbulent flows in porous media. Annu. Rev. Fluid Mech. 52, 171203.CrossRefGoogle Scholar
Wu, X.-F. & Liang, D.-F. 2019 Study of pollutant transport in depth-averaged flows using random walk method. J. Hydrodyn. 31 (2), 303316.CrossRefGoogle Scholar