Published online by Cambridge University Press: 26 April 2006
A laboratory study which simulates the dynamics of shallow sea fronts and the mixing across a tidal front is described. The experiments show, for the first time, that it is possible to simulate a stationary tidal front with the inclusion of buoyancy effects, Coriolis effects and turbulence in the laboratory. Experimental data obtained for the cross-front mixing rate are presented. The data analysis shows that the mixing rate increases with stratification and decreases with rotation. A theoretical model of the flow which collapses the experimental data is developed which shows that the cross-front mixing is controlled by baroclinic processes. The model enables an extrapolation of the laboratory results to oceanographic conditions. Estimates of the cross-front mixing velocity for oceanographic conditions give values consistent with estimates obtained from North Sea data.