Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-09T21:51:33.734Z Has data issue: false hasContentIssue false

A Kriging-based elliptic extended anisotropic model for the turbulent boundary layer wall pressure spectrum

Published online by Cambridge University Press:  06 February 2018

Myriam Slama*
Affiliation:
M2P2, Aix Marseille Univ, CNRS, Centrale Marseille, 13451 Marseille, France Naval Group, Centre d’Expertise des Structures et Matériaux Navals, Technocampus Ocean, 44340 Bouguenais, France
Cédric Leblond
Affiliation:
Naval Group, Centre d’Expertise des Structures et Matériaux Navals, Technocampus Ocean, 44340 Bouguenais, France
Pierre Sagaut
Affiliation:
M2P2, Aix Marseille Univ, CNRS, Centrale Marseille, 13451 Marseille, France
*
Email address for correspondence: [email protected]

Abstract

The present study addresses the computation of the wall pressure spectrum for a turbulent boundary layer flow without pressure gradient, at high Reynolds numbers, using a new model, the Kriging-based elliptic extended anisotropic model (KEEAM). A space–time solution to the Poisson equation for the wall pressure fluctuations is used. Both the turbulence–turbulence and turbulence–mean shear interactions are taken into account. It involves the mean velocity field and space–time velocity correlations which are modelled using Reynolds stresses and velocity correlation coefficients. We propose a new model, referred to as the extended anisotropic model, to evaluate the latter in all regions of the boundary layer. This model is an extension of the simplified anisotropic model of Gavin (PhD thesis, 2002, The Pennsylvania State University, University Park, PA) which was developed for the outer part of the boundary layer. It relies on a new expression for the spatial velocity correlation function and new parameters calibrated using the direct numerical simulation results of Sillero et al. (Phys. Fluids, vol. 26, 2014, 105109). Spatial correlation coefficients are related to space–time coefficients with the elliptic model of He & Zhang (Phys. Rev. E, vol. 73, 2006, 055303). The turbulent quantities necessary for the pressure computation are obtained by Reynolds-averaged Navier–Stokes solutions with a Reynolds stress turbulence model. Then, the pressure correlations are evaluated with a self-adaptive sampling strategy based on Kriging in order to reduce the computation time. The frequency and wavenumber–frequency wall pressure spectra obtained with the KEEAM agree well with empirical models developed for turbulent boundary layer flows without pressure gradient.

Type
JFM Papers
Copyright
© 2018 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

del Álamo, J. C. & Jiménez, J. 2009 Estimation of turbulent convection velocities and corrections to Taylor’s approximation. J. Fluid Mech. 640, 526.Google Scholar
Archambeau, F., Méchitoua, N. & Sakiz, M. 2004 Code_Saturne: a finite volume code for the computation of turbulent incompressible flows. Intl J. Finite Volumes 1.Google Scholar
Aupoix, B. 2015 Extension of Lysak’s approach to evaluate the wall pressure spectrum for boundary layer flows. Flow Turbul. Combust. 94 (1), 6378.CrossRefGoogle Scholar
Batchelor, G. K. 1951 Pressure fluctuations in isotropic turbulence. Math. Proc. Camb. Phil. Soc. 47 (2), 359374.CrossRefGoogle Scholar
Batchelor, G. K. 1959 The Theory of Homogeneous Turbulence. Cambridge University Press.Google Scholar
Bertagnolio, F., Fischer, A. & Jun Zhu, W. 2014 Tuning of turbulent boundary layer anisotropy for improved surface pressure and trailing-edge noise modeling. J. Sound Vib. 333 (3), 9911010.CrossRefGoogle Scholar
Blake, W. 1986 Mechanics of Flow-induced Sound and Vibration, Vols 1 and 2, Applied Mathematics and Mechanics. Academic Press.Google Scholar
Bonness, W. K., Capone, D. E. & Hambric, S. A. 2010 Low-wavenumber turbulent boundary layer wall-pressure measurements from vibration data on a cylinder in pipe flow. J. Sound Vib. 329 (20), 41664180.Google Scholar
Braconnier, T., Ferrier, M., Jouhaud, J.-C., Montagnac, M. & Sagaut, P. 2011 Towards an adaptive POD/SVD surrogate model for aeronautic design. Comput. Fluids 40 (1), 195209.CrossRefGoogle Scholar
Bull, M. K. 1996 Wall-pressure fluctuations beneath turbulent boundary layers: some reflections on forty years of research. J. Sound Vib. 190 (3), 299315.CrossRefGoogle Scholar
Chang, P. A., Piomelli, U. & Blake, W. K. 1999 Relationship between wall pressure and velocity-field sources. Phys. Fluids 11 (11), 34343448.CrossRefGoogle Scholar
Chase, D. M. 1980 Modeling the wavevector-frequency spectrum of turbulent boundary layer wall pressure. J. Sound Vib. 70 (1), 2967.Google Scholar
Chase, D. M. 1987 The character of the turbulent wall pressure spectrum at subconvective wavenumbers and a suggested comprehensive model. J. Sound Vib. 112 (1), 125147.Google Scholar
Chassaing, P. 2000 Turbulence en mécanique des fluides. Cépaduès-éditions.Google Scholar
Choi, H. & Moin, P. 1990 On the space–time characteristics of wall-pressure fluctuations. Phys. Fluids A 2 (8), 14501460.Google Scholar
Corcos, G. M. 1964 The structure of the turbulent pressure field in boundary-layer flows. J. Fluid Mech. 18, 353378.CrossRefGoogle Scholar
Gavin, J. R.2002 Unsteady forces and sound caused by boundary layer turbulence entering a turbomachinery rotor. PhD thesis, The Pennsylvania State University, University Park, PA.Google Scholar
Goody, M. 2004 Empirical spectral model of surface pressure fluctuations. AIAA J. 42 (9), 17881794.Google Scholar
Graham, W. R. 1997 A comparison of models for the wavenumber-frequency spectrum of turbulent boundary layer pressures. J. Sound Vib. 206 (4), 541565.Google Scholar
Guo, L., Li, D., Zhang, X. & He, G.-W. 2012 LES prediction of space–time correlations in turbulent shear flows. Acta Mechanica Sin. 28 (4), 993998.Google Scholar
He, G., Jin, G. & Yang, Y. 2017 Space–time correlations and dynamic coupling in turbulent flows. Annu. Rev. Fluid Mech. 49 (1), 5170.Google Scholar
He, G.-W. & Zhang, J.-B. 2006 Elliptic model for space–time correlations in turbulent shear flows. Phys. Rev. E 73, 055303.Google Scholar
Hu, Z., Morfey, C. L. & Sandham, N. D. 2006 Wall pressure and shear stress spectra from direct simulations of channel flow. AIAA J. 44 (7), 15411549.Google Scholar
Hwang, Y. F., Bonness, W. K. & Hambric, S. A. 2009 Comparison of semi-empirical models for turbulent boundary layer wall pressure spectra. J. Sound Vib. 319 (12), 199217.Google Scholar
Kim, J. 1989 On the structure of pressure fluctuations in simulated turbulent channel flow. J. Fluid Mech. 205, 421451.CrossRefGoogle Scholar
Kraichnan, R. H. 1956 Pressure fluctuations in turbulent flow over a flat plate. J. Acoust. Soc. Am. 28 (3), 378390.Google Scholar
Krige, D. G. 1951 A statistical approach to some basic mine valuation problems on the Witwatersrand. J. South. Afr. Inst. Min. Metall. 52 (6), 119139.Google Scholar
Lee, Y.-T., Blake, W. K. & Farabee, T. M. 2005 Modeling of wall pressure fluctuations based on time mean flow field. Trans. ASME J. Fluids Engng 127 (2), 233240.CrossRefGoogle Scholar
Lee, Y.-T., Farabee, T. M. & Blake, W. K. 2009 Turbulence effects of wall-pressure fluctuations for reattached flow. Comput. Fluids 38 (5), 10331041.Google Scholar
Lesieur, M., Ossia, S. & Métais, O. 1999 Infrared pressure spectra in two- and three-dimensional isotropic incompressible turbulence. Phys. Fluids 11 (6), 15351543.Google Scholar
Lysak, P. D. 2005 Modeling the wall pressure spectrum in turbulent pipe flows. Trans. ASME J. Fluids Engng 128 (2), 216222.Google Scholar
Manceau, R. & Hanjalić, K. 2002 Elliptic blending model: a new near-wall Reynolds-stress turbulence closure. Phys. Fluids 14 (2), 744754.Google Scholar
Margheri, L. & Sagaut, P. 2016 A hybrid anchored-ANOVA – POD/Kriging method for uncertainty quantification in unsteady high-fidelity CFD simulations. J. Comput. Phys. 324, 137173.Google Scholar
Meldi, M. & Sagaut, P. 2013 Pressure statistics in self-similar freely decaying isotropic turbulence. J. Fluid Mech. 717, R2, 1–12.CrossRefGoogle Scholar
Millionschikov, M. 1941 On the theory of homogeneous isotropic turbulence. Dokl. Akad. Nauk SSSR 32, 615618.Google Scholar
Monté, S.2013 Evaluation du bruit hydrodynamique sur une antenne linéaire remorquée. PhD thesis, Université Pierre et Marie Curie.Google Scholar
Panton, R. L. & Linebarger, J. H. 1974 Wall pressure spectra calculations for equilibrium boundary layers. J. Fluid Mech. 65, 261287.Google Scholar
Peltier, L. J. & Hambric, S. A. 2007 Estimating turbulent-boundary-layer wall-pressure spectra from CFD RANS solutions. J. Fluids Struct. 23 (6), 920937.CrossRefGoogle Scholar
Pope, S. B. 2000 Turbulent Flows. Cambridge University Press.Google Scholar
Remmler, S., Christophe, J., Anthoine, J. & Moreau, S. 2010 Computation of wall pressure spectra from steady flow data for noise prediction. AIAA J. 48 (9), 19972007.CrossRefGoogle Scholar
Renard, N. & Deck, S. 2015 On the scale-dependent turbulent convection velocity in a spatially developing flat plate turbulent boundary layer at Reynolds number Re 𝜃 = 13 000. J. Fluid Mech. 775, 105148.Google Scholar
Rotta, J. C. 1962 Turbulent boundary layers in incompressible flow. Prog. Aerosp. Sci. 2 (1), 195.Google Scholar
Rozenberg, Y., Robert, G. & Moreau, S. 2012 Wall-pressure spectral model including the adverse pressure gradient effects. AIAA J. 50 (10), 21682179.Google Scholar
Sagaut, P. & Cambon, C. 2008 Homogeneous Turbulence Dynamics. Cambridge University Press.Google Scholar
Sillero, J. A., Jiménez, J. & Moser, R. D. 2013 One-point statistics for turbulent wall-bounded flows at Reynolds numbers up to +2000. Phys. Fluids 25, 105102.Google Scholar
Sillero, J. A., Jiménez, J. & Moser, R. D. 2014 Two-point statistics for turbulent boundary layers and channels at Reynolds numbers up to 𝛿 + ≈2000. Phys. Fluids 26, 105109.CrossRefGoogle Scholar
Smol’yakov, A. V. 2000 Calculation of the spectra of pseudosound wall-pressure fluctuations in turbulent boundary layers. Acoust. Phys. 46 (3), 342347.Google Scholar
Smol’yakov, A. V. 2006 A new model for the cross spectrum and wavenumber-frequency spectrum of turbulent pressure fluctuations in a boundary layer. Acoust. Phys. 52 (3), 331337.Google Scholar
Stalnov, O., Paruchuri, C. & Joseph, P. 2015 Prediction of broadband trailing-edge noise based on Blake model and Amiet theory. In 21st AIAA/CEAS Aeroacoustics Conference, AIAA Aviation, pp. 20152526. AIAA.Google Scholar
Taylor, G. I. 1938 The spectrum of turbulence. Proc. R. Soc. Lond. A 164 (919), 476490.Google Scholar
Townsend, A. A. 1980 The Structure of Turbulent Shear Flow. Cambridge University Press.Google Scholar
Tutkun, M., George, W. K., Delville, J., Stanislas, M., Johansson, P. B. V., Foucaut, J.-M. & Coudert, S. 2009 Two-point correlations in high Reynolds number flat plate turbulent boundary layers. J. Turbul. 10, N21.CrossRefGoogle Scholar
Wallace, J. M. 2014 Space–time correlations in turbulent flow: a review. Theor. Appl. Mech. Lett. 4, 022003.Google Scholar
Wang, M., Moreau, S., Iaccarino, G. & Roger, M. 2009 LES prediction of wall-pressure fluctuations and noise of a low-speed airfoil. Intl J. Aeroacoust. 8 (3), 177197.Google Scholar
Wang, W., Guan, X.-L. & Jiang, N. 2014 TRPIV investigation of space–time correlation in turbulent flows over flat and wavy walls. Acta Mechanica Sin. 30 (4), 468479.Google Scholar
Wills, J. A. B. 1971 Measurements of the wave-number/phase velocity spectrum of wall pressure beneath a turbulent boundary layer. J. Fluid Mech. 45 (1), 6590.Google Scholar
Zhao, X. & He, G.-W. 2009 Space–time correlations of fluctuating velocities in turbulent shear flows. Phys. Rev. E 79, 046316.Google Scholar