Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-24T21:51:05.621Z Has data issue: false hasContentIssue false

Katabatic flow along a differentially cooled sloping surface

Published online by Cambridge University Press:  04 January 2007

ALAN SHAPIRO
Affiliation:
School of Meteorology, University of Oklahoma, Norman, OK 73072, USA
EVGENI FEDOROVICH
Affiliation:
School of Meteorology, University of Oklahoma, Norman, OK 73072, USA

Abstract

Buoyancy inhomogeneities on sloping surfaces arise in numerous situations, for example, from variations in snow/ice cover, cloud cover, topographic shading, soil moisture, vegetation type, and land use. In this paper, the classical Prandtl model for one-dimensional flow of a viscous stably stratified fluid along a uniformly cooled sloping planar surface is extended to include the simplest type of surface inhomogeneity – a surface buoyancy that varies linearly down the slope. The inhomogeneity gives rise to acceleration, vertical motions associated with low-level convergence, and horizontal and vertical advection of perturbation buoyancy. Such processes are not accounted for in the classical Prandtl model. A similarity hypothesis appropriate for this inhomogeneous flow removes the along-slope dependence from the problem, and, in the steady state, reduces the Boussinesq equations of motion and thermodynamic energy to a set of coupled nonlinear ordinary differential equations. Asymptotic solutions for the velocity and buoyancy variables in the steady state, valid for large values of the slope-normal coordinate, are obtained for a Prandtl number of unity for pure katabatic flow with no ambient wind or externally imposed pressure gradient. The undetermined parameters in these solutions are adjusted to conform to lower boundary conditions of no-slip, impermeability and specified buoyancy. These solutions yield formulae for the boundary-layer thickness and slope-normal velocity component at the top of the boundary layer, and provide an upper bound of the along-slope surface-buoyancy gradient beyond which steady-state solutions do not exist. Although strictly valid for flow above the boundary layer, the steady asymptotic solutions are found to be in very good agreement with the terminal state of the numerical solution of an initial-value problem (suddenly applied surface buoyancy) throughout the flow domain. The numerical results also show that solution non-existence is associated with self-excitation of growing low-frequency gravity waves.

Type
Papers
Copyright
Copyright © Cambridge University Press 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Atkinson, B. W. 1995 Orographic and stability effects on valley-side drainage flows. Boundary- Layer Met. 75, 403428.CrossRefGoogle Scholar
Ball, F. K. 1956 The theory of strong katabatic winds. Austral. J. Phys. 9, 373386.Google Scholar
Batchelor, G. K. 1967 An Introduction to Fluid Dynamics. Cambridge University Press.Google Scholar
Brazel, A. J., Fernando, H. J. S., Hunt, J. C. R., Selover, N., Hedquist, B. C. & Pardyjak, E. 2005 Evening transition observations in Phoenix, Arizona. J. Appl. Met. 44, 99112.CrossRefGoogle Scholar
Bromwich, D. H., Cassano, J. J., Klein, T., Heinemann, G., Hines, K. M., Steffen, K. & Box, J. E. 2001 Mesoscale modeling of katabatic winds over Greenland with the Polar MM5. Mon. Weather Rev. 129, 22902309.Google Scholar
Cushman-Roisin, B. 1984 An exact analytical solution for a time-dependent, elliptical warm-core ring with outcropping interface. Ocean Modelling 59, 56.Google Scholar
Cushman-Roisin, B. 1987 Exact analytical solutions for elliptical vortices of the shallow-water equations. Tellus 39 A, 235244.Google Scholar
Cushman-Roisin, B., Heil, W. H. & Nof, D. 1985 Oscillations and rotations of elliptical warm-core rings. J. Geophys. Res. 90, 11 75611 764.CrossRefGoogle Scholar
Defant, F. 1949 Zur Theorie der Hangwinde, nebst Bemerkungen zur Theorie der Berg- und Talwinde. Arch. Met. Geophys. Bioklim. A 1, 421450.Google Scholar
Doran, J. C. & Horst, T. W. 1981 Velocity and temperature oscillations in drainage winds. J. Appl. Met. 20, 361364.2.0.CO;2>CrossRefGoogle Scholar
Doran, J. C. & Horst, T. W. 1983 Observations and models of simple nocturnal slope flows. J. Atmos. Sci. 40, 708717.Google Scholar
Elder, J. W. 1965 Laminar free convection in a vertical slot. J. Fluid Mech. 23, 7798.CrossRefGoogle Scholar
Egger, J. 1981 On the linear two-dimensional theory of thermally induced slope winds. Beitr. Z. Phys. Atmos. 54, 465481.Google Scholar
Egger, J. 1985 Slope winds and the axisymmetric circulation over Antarctica. J. Atmos. Sci. 42, 18591867.2.0.CO;2>CrossRefGoogle Scholar
Fernando, H. J. S., Lee, S. M., Anderson, J., Princevac, M., Pardyjak, E. & Grossman-Clarke, S. 2001 Urban fluid mechanics: air circulation and contaminant dispersion in cities. Environ. Fluid Mech. 1, 107164.Google Scholar
Fiedler, B. H. 1999 Thermal convection in a layer bounded by uniform heat flux: application of a strongly nonlinear analytical solution. Geophys. Astrophys. Fluid Dyn. 91, 223250.CrossRefGoogle Scholar
Fitzjarrald, D. R. 1984 Katabatic wind in opposing flow. J. Atmos. Sci. 41, 11431158.Google Scholar
Fletcher, C. A. J. 1988 Computational Techniques for Fluid Dynamics, vol. 1. Springer.Google Scholar
Gallee, H. & Schayes, G. 1994 Development of a 3-dimensional meso-γ primitive equation model: katabatic winds simulation in the area of Terra Nova Bay, Antarctica. Mon. Weather Rev. 122, 671685.Google Scholar
Gill, A. E. 1966 The boundary layer regime for convection in a rectangular cavity. J. Fluid Mech. 26, 515536.CrossRefGoogle Scholar
Grisogono, B. & Oerlemans, J. 2001 Analytic solution for gradually varying eddy diffusivities. J. Atmos. Sci. 58, 33493354.2.0.CO;2>CrossRefGoogle Scholar
Grisogono, B. & Oerlemans, J. 2002 Justifying the WKB approximation in pure katabatic flows. Tellus A 54, 453462.CrossRefGoogle Scholar
Gutman, L. N. 1972 Introduction to the Nonlinear Theory of Mesoscale Meteorological Processes (Trans. from Russian). Israel Program for Scientific Translations, Jerusalem.Google Scholar
Gutman, L. N. 1983 On the theory of the katabatic slope wind. Tellus A 35, 213218.Google Scholar
Gutman, L. N. & Malbakhov, V. M. 1964 On the theory of katabatic winds of Antarctica. Met. Issled. 150–155.Google Scholar
Gutman, L. N. & Melgarejo, J. W. 1981 On the laws of geostrophic drag and heat transfer over a slightly inclined terrain. J. Atmos. Sci. 38, 17141724.2.0.CO;2>CrossRefGoogle Scholar
Haiden, T. & Whiteman, C. D. 2005 Katabatic flow mechanisms on a low-angle slope. J. Appl. Met. 44, 113126.Google Scholar
Heinemann, G. & Klein, T. 2002 Modelling and observations of the katabatic flow dynamics over Greenland. Tellus A 54, 542554.CrossRefGoogle Scholar
Helmis, C. G. & Papadopoulos, K. H. 1996 Some aspects of the variation with time of katabatic flow over a simple slope. Q. J. R. Met. Soc. 122, 595610.CrossRefGoogle Scholar
Hunt, J. C. R., Fernando, H. J. S. & Princevac, M. 2003 Unsteady thermally driven flows on gentle slopes. J. Atmos. Sci. 60, 21692182.Google Scholar
Imberger, J. & Patterson, J. C. 1990 Physical limnology. Adv. Appl. Mech. 27, 303475.Google Scholar
Klein, T., Heinemann, G., Bromwich, D. H., Cassano, J. J. & Hines, K. M. 2001 Mesoscale modeling of katabatic winds over Greenland and comparisons with AWS and aircraft data. Met. Atmos. Phys. 78, 115132.Google Scholar
Kondo, H. 1984 The difference of the slope wind between day and night. J. Met. Soc. Japan 62, 224233.CrossRefGoogle Scholar
Lied, N. T. 1964 Stationary hydraulic jumps in a katabatic flow near Davis, Antarctica, 1961. Austral. Met. Mag. 47, 4051.Google Scholar
Lu, R. & Turco, R. P. 1994 Air pollutant transport in a coastal environment. Part I: Two-dimensional simulations of sea-breeze and mountain effects. J. Atmos. Sci. 51, 22852308.2.0.CO;2>CrossRefGoogle Scholar
Lykosov, V. N. & Gutman, L. N. 1972 Turbulent boundary layer above a sloping underlying surface. Izv. Acad. Sci. USSR, Atmos. Ocean. Phys. 8, 799809.Google Scholar
Madsen, O. S. 1977 A realistic model of the wind-induced Ekman boundary layer. J. Phys. Ocean. 7, 248255.Google Scholar
Manins, P. C. & Sawford, B. L. 1979 A model of katabatic winds. J. Atmos. Sci. 36, 619630.2.0.CO;2>CrossRefGoogle Scholar
Monti, P., Fernando, H. J. S., Princevac, M., Chan, W. C., Kowalewski, T. A. & Pardyjak, E. R. 2002 Observations of flow and turbulence in the nocturnal boundary layer over a slope. J. Atmos. Sci. 59, 25132534.2.0.CO;2>CrossRefGoogle Scholar
Oerlemans, J. 1998 The atmospheric boundary layer over melting glaciers. Clear and Cloudy Boundary Layers (ed. Holtslag, A. A. M. & Duynkerke, P. G.), pp. 129153. Royal Netherlands Academy of Arts and Sciences.Google Scholar
Papadopoulos, K. H., Helmis, C. G., Soilemes, A. T., Kalogiros, J., Papageorgas, P. G. & Asimakopoulos, D. N. 1997 The structure of katabatic flows down a simple slope. Q. J. R. Met. Soc. 123, 15811601.Google Scholar
Parish, T. R. 1984 A numerical study of strong katabatic winds over Antarctica. Mon. Weather Rev. 112, 545554.2.0.CO;2>CrossRefGoogle Scholar
Parish, T. R. & Waight, K. T. 1987 The forcing of antarctic katabatic winds. Mon. Weather Rev. 115, 22142226.2.0.CO;2>CrossRefGoogle Scholar
Peacock, T., Stocker, R. & Aristoff, M. 2004 An experimental investigation of the angular dependence of diffusion-driven flow. Phys. Fluids 16, 35033505.Google Scholar
Pettré, P. & André, J.-C. 1991 Surface-pressure change through Loewe's phenomena and katabatic flow jumps: study of two cases in Adélie Land, Antarctica. J. Atmos. Sci. 48, 557571.Google Scholar
Phillips, O. M. 1970 On flows induced by diffusion in a stably stratified fluid. Deep-Sea Res. 17, 435443.Google Scholar
Prandtl, L. 1942 Führer durch die Strömungslehre. Vieweg, Braunschweig.Google Scholar
Renfrew, I. A. 2004 The dynamics of idealized katabatic flow over a moderate slope and ice shelf. Q. J. R. Met. Soc. 130, 10231045.Google Scholar
Schlichting, H. 1979 Boundary-Layer Theory. McGraw-Hill.Google Scholar
Shapiro, A. 1996 Nonlinear shallow-water oscillations in a parabolic channel: exact solutions and trajectory analyses. J. Fluid Mech. 318, 4976.Google Scholar
Shapiro, A. 2001 A centrifugal wave solution of the Euler and Navier–Stokes equations. Z. Angew. Math. Phys. 52, 913923.Google Scholar
Shapiro, A. & Fedorovich, E. 2004 Unsteady convectively driven flow along a vertical plate immersed in a stably stratified fluid. J. Fluid Mech. 498, 333352.Google Scholar
Skyllingstad, E. D. 2003 Large-eddy simulation of katabatic flows. Boundary-Layer Met. 106, 217243.CrossRefGoogle Scholar
Stone, G. L. & Hoard, D. E. 1989 Low-frequency velocity and temperature fluctuations in katabatic valley flows. J. Appl. Met. 28, 477488.Google Scholar
Thacker, W. C. 1981 Some exact solutions to the nonlinear shallow-water wave equations. J. Fluid Mech. 107, 499508.Google Scholar
Tyson, P. D. 1968 Velocity fluctuations in the mountain wind. J. Atmos. Sci. 25, 381384.Google Scholar
Veronis, G. 1970 The analogy between rotating and stratified fluids. Annu. Rev. Fluid Mech. 2, 3766.CrossRefGoogle Scholar
Wunsch, C. 1970 On oceanic boundary mixing. Deep-Sea Res. 17, 293301.Google Scholar