Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-09T21:57:03.051Z Has data issue: false hasContentIssue false

A Kármán–Howarth–Monin equation for variable-density turbulence

Published online by Cambridge University Press:  27 March 2018

Chris C. K. Lai*
Affiliation:
Physics Division, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
John J. Charonko
Affiliation:
Physics Division, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
Katherine Prestridge
Affiliation:
Physics Division, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
*
Email address for correspondence: [email protected]

Abstract

We present a generalisation of the Kármán–Howarth–Monin (K–H–M) equation to include variable-density (VD) effects. The derived equation (i) reduces to the original K–H–M equation when density is a constant and (ii) leads to a VD analogue of the $4/5$-law with the same value of constant ($=4/5$) appearing as the prefactor of the dissipation rate. The equation is employed to understand negative turbulent kinetic energy production in a $\text{SF}_{6}$ turbulent round jet with an initial density ratio of 4.2. From a Reynolds-averaged Navier–Stokes (RANS) perspective, negative production means that the mean flow is strengthened at the expense of the energy of turbulent fluctuations. We show that the associated energy transfer is accomplished by the deformation of smaller turbulent eddies into large ones in the development region of the jet and is captured by the linear scale-by-scale energy transfer term in the VD K–H–M equation. The nonlinear transfer term of the VD K–H–M equation depicts a conventional forward cascade for all eddies having a size less than the Eulerian integral length scale, regardless of their orientation. The net effect is a retarded energy cascade in the non-Boussinesq jet that has not been accounted for by existing turbulence theories. Implications of this observation for turbulence modelling are discussed.

Type
JFM Papers
Copyright
© 2018 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aivalis, K. G., Sreenivasan, K. R., Tsuji, Y., Klewicki, J. & Biltoft, C. A. 2002 Temperature structure functions for air flow over moderately heated ground. Phys. Fluids 14, 24392446.Google Scholar
Alves Portela, F., Papadakis, G. & Vassilicos, J. C. 2017 The turbulence cascade in the near wake of a square prism. J. Fluid Mech. 825, 315352.Google Scholar
Antonia, R. A. & Burattini, P. 2006 Approach to the 4/5 law in homogeneous isotropic turbulence. J. Fluid Mech. 550, 175184.Google Scholar
Burattini, P., Antonia, R. A. & Danaila, L. 2005 Scale-by-scale energy budget on the axis of a turbulent round jet. J. Turbul. 6, 111.Google Scholar
Cardesa, J. I., Vela-Martin, A. & Jimenez, J. 2017 The turbulent cascade in five dimensions. Science 357, 782784.Google Scholar
Casciola, C. M., Gualtieri, P., Benzi, R. & Piva, R. 2003 Scale-by-scale budget and similarity laws for shear turbulence. J. Fluid Mech. 476, 105114.Google Scholar
Charonko, J. J. & Prestridge, K. 2017 Variable density mixing in turbulent jets with coflow. J. Fluid Mech. 825, 887921.Google Scholar
Chassaing, P., Antonia, R. A., Anselmet, F., Joly, L. & Sarkar, S. 2002 Variable Density Fluid Turbulence, Fluid Mechanics and its Applications, vol. 69. Springer.Google Scholar
Chassaing, P., Harran, G. & Joly, L. 1994 Density fluctuation correlations in free turbulent binary mixing. J. Fluid Mech. 279, 239278.Google Scholar
Chen, J., Meneveau, C. & Katz, J. 2006 Scale interactions of turbulence subjected to a straining–relaxation–destraining cycle. J. Fluid Mech. 562, 123150.Google Scholar
Clark, T. T.2015. Viscous and diffusive corrections to a Reynolds transport model. Tech. Rep. Dept. Mech. Engrg., The University of New Mexico.Google Scholar
Clark, T. T. & Spitz, P. B.2005 Two-point correlation equations for variable density turbulence. Tech. Rep. LA-12671-MS. Los Alamos National Laboratory.Google Scholar
Danaila, L., Antonia, R. A & Burattini, P. 2004 Progress in studying small-scale turbulence using ‘exact’ two-point equations. New J. Phys. 6, 128.Google Scholar
Davidson, P. A. 2015 Turbulence – An Introduction for Scientists and Engineers, 2nd edn. Oxford University Press.Google Scholar
Dimotakis, P. E. 1986 Two-dimensional shear-layer entrainment. AIAA J. 24 (11), 17911796.Google Scholar
Fukayama, D., Oyamada, T., Nakano, T., Gotoh, T. & Yamamoto, K. 2000 Longitudinal structure functions in decaying and forced turbulence. J. Phys. Soc. Japan 69, 701715.Google Scholar
Gagne, Y., Castaing, B., Baudet, B. & Malecot, Y. 2004 Reynolds number dependence of third-order velocity structure functions. Phys. Fluids 16, 482485.Google Scholar
Ganapathisubramani, B., Lakshminarasimhan, K. & Clemens, N. T. 2007 Determination of complete velocity gradient tensor by using cinematographic stereoscopic PIV in a turbulent jet. Exp. Fluids 42, 923939.Google Scholar
Gomes-Fernandes, R., Ganapathisubramani, B. & Vassilicos, J. C. 2015 The energy cascade in near-field non-homogeneous non-isotropic turbulence. J. Fluid Mech. 771, 676705.Google Scholar
Gotoh, T., Fukayama, D. & Nakano, T. 2002 Velocity field statistics in homogeneous steady turbulence obtained using a high-resolution direct numerical simulation. Phys. Fluids 14, 10651081.Google Scholar
Gualtieri, P., Casciola, C. M., Benzi, R. & Piva, R. 2007 Preservation of statistical properties in large-eddy simulation of shear turbulence. J. Fluid Mech. 592, 471494.Google Scholar
Gualtieri, P. & Meneveau, C. 2010 Direct numerical simulations of turbulence subjected to a straining and destraining cycle. Phys. Fluids 22, 065104.Google Scholar
Hill, R. J. 2002 Exact second-order structure-function relationships. J. Fluid Mech. 468, 317326.Google Scholar
von Kàrmàn, T. & Howarth, L. 1938 On the statistical theory of isotropic turbulence. Proc. R. Soc. Lond. A 164 (917), 192215.Google Scholar
Kholmyansky, M. & Tsinober, A. 2008 Kolmogorov 4/5 law, nonlocality, and sweeping decorrelation hypothesis. Phys. Fluids 20, 041704.Google Scholar
Kolmogorov, A. N. 1941 The local structure of turbulence in incompressible viscous fluid for very large Reynolds numbers. Dokl. Akad. Nauk. SSSR 30, 299303.Google Scholar
Lavoie, P., Djenidi, L. & Antonia, R. A. 2007 Effects of initial conditions in decaying turbulence generated by passive grids. J. Fluid Mech. 585, 395420.Google Scholar
Lee, J. H. W. & Chu, V. H. 2003 Turbulent Jets and Plumes – A Lagrangian Approach. Kluwer Publisher.Google Scholar
Lévêque, E., Toschi, F., Shao, L. & Bertoglio, J.-P. 2007 Shear-improved Smagorinsky model for large-eddy simulation of wall-bounded turbulent flows. J. Fluid Mech. 570, 491502.Google Scholar
Liberzon, A., Lüthi, B., Guala, M., Kinzelbach, W. & Tsinober, A. 2005 Experimental study of the structure of flow regions with negative turbulent kinetic energy production in confined three-dimensional shear flows with and without buoyancy. Phys. Fluids 17, 095110.Google Scholar
Livescu, D. & Ristorcelli, J. R. 2007 Buoyancy-driven variable-density turbulence. J. Fluid Mech. 591, 4371.Google Scholar
Livescu, D., Ristorcelli, J. R., Peterson, M. R. & Gore, R. A. 2010 New phenomena in variable-density Rayleigh–Taylor turbulence. Phys. Scr. T142, 014015.Google Scholar
Lumley, J. L. 1979 Computational modeling of turbulent flows. Adv. Appl. Mech. 18, 123176.Google Scholar
Marati, N., Casciola, C. M. & Piva, R. 2004 Energy cascade and spatial fluxes in wall turbulence. J. Fluid Mech. 521, 191215.Google Scholar
Meneveau, C. & Katz, J. 2000 Scale-invariance and turbulence models for lage-eddy simulation. Annu. Rev. Fluid Mech. 32, 132.Google Scholar
Moisy, F., Tabeling, P. & Willaime, H. 1999 Kolmogorov equation in a fully developed turbulence experiment. Phys. Rev. Lett. 82, 39943997.Google Scholar
Monin, A. S. & Yaglom, A. M. 1975 Statistical Fluid Mechanics. vol. II. MIT Press.Google Scholar
Moser, R. D., Kim, J. & Mansour, N. N. 1999 Direct numerical simulation of turbulent channel flow up to Re 𝜏 = 590. Phys. Fluids 11 (4), 943945.Google Scholar
Pope, S. B. 2000 Turbulent Flows. Cambridge University Press.Google Scholar
Rasmussen, H. O. 1999 A new proof of Kolmogorov’s 4/5-law. Phys. Fluids 11 (11), 34953498.Google Scholar
Sadeghi, H., Lavoie, P. & Pollard, A. 2015 Equilibrium similarity solution of the turbulent transport equation along the centreline of a round jet. J. Fluid Mech. 772, 740755.Google Scholar
Sadeghi, H., Lavoie, P. & Pollard, A. 2016 Scale-by-scale budget equation and its self-preservation in the shear-layer of a free round jet. Intl J. Heat Fluid Flow 61, 8595.Google Scholar
Shen, X. & Warhaft, Z. 2000 The anisotropy of the small scale structure in high Reynolds number (r 𝜆 ∼ 1000) turbulent shear flow. Phys. Fluids 12 (11), 29762989.Google Scholar
Tanaka, T. & Eaton, J. K. 2007 A correction method for measuring turbulence kinetic energy dissipation rate by PIV. Exp. Fluids 42 (6), 893902.Google Scholar
Taub, G., Lee, H., Balachandar, S. & Sherif, S. 2013 A direct numerical simulation study of high order statistics in a turbulent round jet. Phys. Fluids 25, 115102.Google Scholar
Taylor, G. I. 1935 Statistical theory of turbulence. Proc. R. Soc. Lond. A 151 (873), 421444.Google Scholar
Thiesset, F., Antonia, R. A. & Danaila, L. 2013 Scale-by-scale turbulent energy budget in the intermediate wake of two-dimensional generators. Phys. Fluids 25, 115105.Google Scholar
Tsinober, A. 2009 An Informal Conceptual Introduction to Turbulence, 2nd edn. Springer.Google Scholar
Valente, P. C. & Vassilicos, J. C. 2014 The non-equilibrium region of grid-generated decaying turbulence. J. Fluid Mech. 744, 537.Google Scholar
Valente, P. C. & Vassilicos, J. C. 2015 The energy cascade in grid-generated non-equilibrium decaying turbulence. Phys. Fluids 27, 045103.Google Scholar
Van de Water, W. & Herweijer, J. A. 1999 High-order structure functions of turbulence. J. Fluid Mech. 387, 337.Google Scholar
Voivenel, L., Danaila, L., Varea, E., Renou, B. & Cazalens, M. 2016 On the similiarity of variable viscosity flows. Phys. Scr. 91, 084007.Google Scholar
Warhaft, Z. 2009 Why we need experiments at high Reynolds numbers. Fluid Dyn. Res. 41, 021401.Google Scholar
Zhou, T. & Antonia, R. A. 2000 Reynolds number dependence of the small-scale structure of grid turbulence. J. Fluid Mech. 406, 81107.Google Scholar