Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-09T22:16:06.907Z Has data issue: false hasContentIssue false

A jet-like structure revealed by a numerical simulation of rotating spherical-shell magnetoconvection

Published online by Cambridge University Press:  05 February 2007

ATARU SAKURABA*
Affiliation:
Department of Earth and Planetary Science, University of Tokyo, Tokyo, Japan

Abstract

Numerical results on thermally driven nonlinear magnetoconvection in a rapidly rotating fluid spherical shell are reported. A uniform magnetic field that is parallel to the rotation axis is imposed externally. The Ekman number is 2 × 10−6, representing a state of negligible viscosity, as in the Earth's core. The convection pattern is characterized by a few large-scale vortex columns superimposed on a fast westward (retrograde) zonal flow. In the equatorial region, an anticyclonic vortex is intensified, in which an induced axial magnetic field is stored. Interaction between the magnetized vortex and the zonal flow leads to a thin jet at the western side of the vortex. The jet is also characterized by a thin electric current sheet caused by a steep gradient of the axial magnetic field. Because of this structure, the jet region can be designated as a magnetic front by analogy with fronts in mid-latitude atmospheric cyclones. It can be estimated from an order-of-magnitude analysis that the jet width decreases in inverse proportion to the zonal flow speed, and that the jet speed and the sheet-like electric current are proportional to the square of the zonal flow speed.

Type
Papers
Copyright
Copyright © Cambridge University Press 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Aubert, J. 2005 Steady zonal flows in spherical shell dynamos. J. Fluid Mech. 542, 5367.CrossRefGoogle Scholar
Aubert, J., Brito, D., Nataf, H.-C., Cardin, P. & Masson, J.-P. 2001 A systematic experimental study of rapidly rotating spherical convection in water and liquid gallium. Phys. Earth Planet. Inter. 128, 5174.CrossRefGoogle Scholar
Aurnou, J., Andreadis, S., Zhu, L. & Olson, P. 2003 Experiments on convection in Earth's core tangent cylinder. Earth Planet. Sci. Lett. 212, 119134.CrossRefGoogle Scholar
Cardin, P. & Olson, P. 1995 The influence of toroidal magnetic field on thermal convection in the core. Earth Planet. Sci. Lett. 132, 167181.CrossRefGoogle Scholar
Chandrasekhar, S. 1961 Hydrodynamic and hydromagnetic stability. Oxford: Clarendon Press.Google Scholar
Dormy, E., Cardin, P. & Jault, D. 1998 MHD flow in a slightly differentially rotating spherical shell with conducting inner core in a dipolar magnetic field. Earth Planet. Sci. Lett. 160, 1530.CrossRefGoogle Scholar
Dormy, E., Jault, D. & Soward, A. M. 2002 A super-rotating shear layer in magnetohydrodynamic spherical Couette flow. J. Fluid Mech. 452, 263291.CrossRefGoogle Scholar
Fearn, D. R. 1979 Thermal and magnetic instabilities in a rapidly rotating sphere. Geophys. Astrophys. Fluid Dyn. 14, 103126.CrossRefGoogle Scholar
Glatzmaier, G. A. & Roberts, P. H. 1995 A three-dimensional self-consistent computer simulation of a geomagnetic field reversal. Nature 377, 637640.Google Scholar
Hollerbach, R. & Skinner, S. 2001 Instabilities of magnetically induced shear layers and jets. Proc. R. Soc. Lond. A 457, 785802.CrossRefGoogle Scholar
Hulot, G., Eymin, C., Langlais, B., Mandea, M. & Olsen, N. 2002 Small-scale structure of the geodynamo inferred from Oersted and Magsat satellite data. Nature 416, 620623.CrossRefGoogle ScholarPubMed
Ishihara, N. & Kida, S. 2002 Dynamo mechanism in a rotating spherical shell: competition between magnetic field and convection vortices. J. Fluid Mech. 465, 132.CrossRefGoogle Scholar
Kageyama, A., Sato, T., Watanabe, K., Horiuchi, R., Hayashi, T., Todo, Y., Watanabe, T. H. & Takamaru, H. 1995 Computer simulation of a magnetohydrodynamic dynamo. II. Phys. Plasmas 2, 14211431.CrossRefGoogle Scholar
Kono, M. & Roberts, P. H. 2002 Recent geodynamo simulations and observations of the geomagnetic field. Rev. Geophys. 40, 1013, doi:10.1029/2000RG000102.CrossRefGoogle Scholar
Kuang, W. & Bloxham, J. 1997 An Earth-like numerical dynamo model. Nature 389, 371374.CrossRefGoogle Scholar
Li, J., Sato, T. & Kageyama, A. 2002 Repeated and sudden reversals of the dipole field generated by a spherical dynamo action. Science 295, 18871890.CrossRefGoogle ScholarPubMed
Olson, P. & Glatzmaier, G. A. 1995 Magnetoconvection in a rotating spherical shell: structure of flow in the outer core. Phys. Earth Planet. Inter. 92, 109118.CrossRefGoogle Scholar
Olson, P. & Glatzmaier, G. A. 1996 Magnetoconvection and thermal coupling of the earth's core and mantle. Phil. Trans. R. Soc. Lond. A 354, 14131424.Google Scholar
Sakuraba, A. 2002 Linear magnetoconvection in rotating fluid spheres permeated by a uniform axial magnetic field. Geophys. Astrophys. Fluid Dyn. 96, 291318.CrossRefGoogle Scholar
Sakuraba, A. & Kono, M. 1999 Effect of the inner core on the numerical solution of the magnetohydrodynamic dynamo. Phys. Earth Planet. Inter. 111, 105121.CrossRefGoogle Scholar
Sakuraba, A. & Kono, M. 2000 Effect of a uniform magnetic field on nonlinear magnetoconvection in a rotating fluid spherical shell. Geophys. Astrophys. Fluid Dyn. 92, 255287.CrossRefGoogle Scholar
Sarson, G. R., Jones, C. A., Zhang, K. & Schubert, G. 1997 Magnetoconvection dynamos and the magnetic fields of Io and Ganymede. Science 276, 11061108.CrossRefGoogle Scholar
Stellmach, S. & Hansen, U. 2004 Cartesian convection driven dynamos at low ekman number. Phys. Rev. E 70, 056312.CrossRefGoogle ScholarPubMed
Stern, M. E., Chassignet, E. P. & Whitehead, J. A. 1997 The wall jet in a rotating fluid. J. Fluid Mech. 335, 128.CrossRefGoogle Scholar
Sumita, I. & Olson, P. 1999 A laboratory model for convection in Earth's core driven by a thermally heterogeneous mantle. Science 286, 15471549.CrossRefGoogle ScholarPubMed
Sumita, I. & Olson, P. 2002 Rotating thermal convection experiments in a hemispherical shell with heterogeneous boundary heat flux: implications for the Earth's core. J. Geophys. Res. 107, 2169, doi:10.1029/2001JB000548.Google Scholar
Sumita, I. & Olson, P. 2003 Experiments on highly supercritical thermal convection in a rapidly rotating hemispherical shell. J. Fluid Mech. 492, 271287.CrossRefGoogle Scholar
Walker, M. R. & Barenghi, C. F. 1997 Magnetoconvection in a rapidly rotating sphere. Geophys. Astrophys. Fluid Dyn. 85, 129162.CrossRefGoogle Scholar
Walker, M. R. & Barenghi, C. F. 1999 Nonlinear magnetoconvection and the geostrophic flow. Phys. Earth Planet. Inter. 111, 3546.CrossRefGoogle Scholar
Zhang, K. 1995 Spherical shell rotating convection in the presence of a toroidal field. Proc. R. Soc. Lond. A 448, 245268.Google Scholar
Zhang, K. & Schubert, G. 2000 Magnetohydrodynamics in rapidly rotating spherical systems. Annu. Rev. Fluid Mech. 32, 409443.CrossRefGoogle Scholar