Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-09T21:52:47.088Z Has data issue: false hasContentIssue false

Jeans collapse of turbulent gas clouds: tentative theory

Published online by Cambridge University Press:  26 April 2006

S. Bonazzola
Affiliation:
Observatoire de Paris, Section de Meudon, F-92195 Meudon Cedex, France
M. Pérault
Affiliation:
Ecole Normale Supérieure, 24 rue Lhomond, F-75005 Paris, France Observatoire de Paris, Section de Meudon, F-92195 Meudon Cedex, France
J. L. Puget
Affiliation:
Ecole Normale Supérieure, 24 rue Lhomond, F-75005 Paris, France Observatoire de Paris, Section de Meudon, F-92195 Meudon Cedex, France
J. Heyvaerts
Affiliation:
Observatoire de Paris, Section de Meudon, F-92195 Meudon Cedex, France Université Paris 7, LAEC, France
E. Falgarone
Affiliation:
Ecole Normale Supérieure, 24 rue Lhomond, F-75005 Paris, France Observatoire de Paris, Section de Meudon, F-92195 Meudon Cedex, France
J. F. Panis
Affiliation:
Ecole Normale Supérieure, 24 rue Lhomond, F-75005 Paris, France Observatoire de Paris, Section de Meudon, F-92195 Meudon Cedex, France

Abstract

The linear Jeans stability problem in a turbulent medium is treated using a description of the large-scale motions, with the response of turbulence on the small scales being treated using a renormalization approach. This treatment shows how turbulence at scales smaller than the potentially collapsing scale builds up a turbulent pressure force which effectively resists compression, if the kinetic energy is sufficient to balance the gravitational attraction.

Type
Research Article
Copyright
© 1992 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bonazzola S., Falgarone E., Heyvaerts J., Pérault, M. & Puget J. L. 1987 Jeans collapse in a turbulent medium. Astron. Astrophys. 172, 293.Google Scholar
Bourret N. 1965 Fiction theory of dynamical systems with noisy parameters. Can. J. Phys. 43, 619.Google Scholar
Chandrasekhar S. 1951a The fluctuations of density in isotropic turbulence Proc. R. Lond. Soc. A 210, 18.Google Scholar
Chandrasekhar S. 1951b The gravitational instability of an infinite homogeneous turbulent medium Proc. R. Soc. Lond. A 210, 26.Google Scholar
Falgarone, E. & Pérault M. 1988 Structure at the 0.02 pc scale in molecular gas of low H2 column density. Astron. Astrophys. 205, L1.Google Scholar
Falgarone E., Phillips, T. G. & Walker C. K. 1990 The edges of molecular clouds: fractal boundaries and the density structure. Astrophys. J. 378, 186.Google Scholar
Forster D., Nelson, D. R. & Stephen M. J. 1977 Large-distance and long-time properties of a randomly stirred fluid Phys. Rev. A 16, 732.Google Scholar
Hartke G. J., Canuto, V. M. & Alonso C. T. 1988 A direct interaction approximation treatment of turbulence in a compressible fluid. Phys. Fluids 31, 1034.Google Scholar
Henriksen R. N. 1986 Inhomogeneous turbulence. Astrophys. J. 331, 359.Google Scholar
Higdon J. C. 1986 Density fluctuations in the interstellar medium: evidence for anisotropic magnetogasdynamic turbulence. Astrophys. J. 309, 342.Google Scholar
Jeans J. H. 1902 The stability of a spherical nebula Phil. Trans. R. Soc. Lond. A 199, 1.Google Scholar
Jeans J. H. 1929 Astronomy and Cosmology, pp. 345347. Cambridge University Press.
Léorat J., Passot, T. & Pouquet A. 1990 Influence of supersonic turbulence on self-gravitating flows. Mon. Not. R. Astron. Soc. 243, 293.Google Scholar
Lighthill M. J. 1952 On sound generated aerodynamically Proc. R. Soc. Lond. A 211, 564.Google Scholar
Ma, S. K. & Mazenko G. F. 1975 Critical dynamics of ferromagnets in 6— dimensions: General discussion and detailed calculation Phys. Rev. B 11, 4077.Google Scholar
Moffatt H. K. 1981 Some developments in the theory of turbulence. J. Fluid Mech. 106, 27.Google Scholar
Moffatt H. K. 1983 Transport effects associated with turbulence with particular attention to the influence of helicity. Rep. Prog. Phys. 46, 621.Google Scholar
Passot T., Pouquet, A. & Woodward P. R. 1988 The plausibility of Kolmogorov-type spectra in molecular clouds. Astron. Astrophys. 197, 228.Google Scholar
Pouquet A., Fournier, J. D. & Sulem P. L. 1978 Is helicity relevant for large scale steady state three-dimensional turbulence? J. Phys. Paris 39, L199.Google Scholar
Rose H. A. 1977 Eddy diffusivity, eddy noise and subgrid-scale modelling. J. Fluid Mech. 81, 719.Google Scholar
Sasao T. 1973 On the generation of density fluctuations due to turbulence in self-gravitating media. Publ. Astron. Soc. Japan 25, 1.Google Scholar
Staroselsky I., Yakhot V., Kida, S. & Orszag S. A. 1990 Long-time, large-scale properties of a randomly stirred compressible fluid. Phys. Rev. Lett. 65, 171.Google Scholar
Yakhot, V. & Orszag S. A. 1986a Renormalization-group of turbulence. Phys. Rev. Lett. 57, 1722.Google Scholar
Yakhot, V. & Orszag S. A. 1986b Renormalisation group analysis of turbulence I. Basic theory. J. Sci. Comput. 1, 3.Google Scholar
Yakhot, V. & Orszag S. A. 1987 Relation between the Kolmogorov and Batchelor constants. Phys. Fluids 30, 3.Google Scholar