Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-09T21:42:33.776Z Has data issue: false hasContentIssue false

Isotropy of the small scales of turbulence at low Reynolds number

Published online by Cambridge University Press:  26 April 2006

J. Kim
Affiliation:
Center for Turbulence Research, NASA-Ames Research Center, Moffett Field, CA 94035, USA
R. A. Antonia
Affiliation:
Department of Mechanical Engineering, University of Newcastle, New South Wales, 2308, Australia

Abstract

Spectral local isotropy tests are applied to direct numerical simulation data, mainly at the centreline of a fully developed turbulent channel flow. Despite the small Reynolds number of the simulation, the high-wavenumber behaviour of velocity and vorticity spectra is consistent with local isotropy. This consistency is verified by the relationship between streamwise wavenumber spectra and spanwise wavenumber spectra. The high-wavenumber behaviour of the pressure spectrum is also consistent with local isotropy and compares favourably with the calculation of Batchelor (1951), which assumes isotropy and joint normality of the velocity field at two points in space. The latter assumption is validated by the shape but not the magnitude of the quadruple correlation of the streamwise velocity fluctuation at small separations. There is only partial support for local spectral isotropy away from the centreline as the magnitude of the mean strain rate increases.

Type
Research Article
Copyright
© 1993 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Antonia, R. A., Anselmet, F. & Chambers, A. J. 1986 Assessment of local isotropy using measurements in a turbulent plane jet. J. Fluid Mech. 163, 365391.Google Scholar
Antonia, R. A., Browne, L. W. B. & Shah, D. A. 1988 Characteristics of vorticity fluctuations in a turbulent wake. J. Fluid Mech. 189, 349365.Google Scholar
Antonia, R. A., Kim, J. & Browne, L. W. B. 1991 Some characteristics of small-scale turbulence in a turbulent duct flow. J. Fluid Mech. 233, 369388.Google Scholar
Antonia, R. A., Shah, D. A. & Browne, L. W. B. 1987 Spectra of velocity derivatives in a turbulent wake. Phys. Fluids 30, 34553462.Google Scholar
Antonia, R. A., Shah, D. A. & Browne, L. W. B. 1988 Dissipation and vorticity spectra in a turbulent wake. Phys. Fluids 31, 18051807.Google Scholar
Antonia, R. A., Teitel, M., Kim, J. & Browne, L. W. B. 1992 Low Reynolds number effects in a fully developed turbulent channel flow. J. Fluid Mech. 236, 579605.Google Scholar
Batchelor, G. K. 1951 Pressure fluctuations in isotropic turbulence. Proc. Camb. Phil. Soc. 47, 359374.Google Scholar
Batchelor, G. K. 1953 The Theory of Homogeneous Turbulence. Cambridge University Press.
Brasseur, J. G. 1991 Comments on the Kolmogorov hypothesis of isotropy in the small scales. AIAA-91-0230, 29th Aerospace Sciences Meeting, January 7–10, 1991, Reno, Nevada.
Champagne, F. H. 1978 The fine-scale structure of the turbulent velocity field. J. Fluid Mech. 86, 67108.Google Scholar
Champagne, F. H., Harris, V. G. & Corrsin, S. 1970 Experiments on nearly homogeneous turbulent shear flow. J. Fluid Mech. 41, 81139.Google Scholar
Comte-Bellot, G. 1963 Turbulent flow between two parallel walls. Université de Grenoble (translated by P. Bradshaw, Rep. ARC 31609 FM4/02, 1969).
Domaradzky, J. A. & Rogallo, R. S. 1991 Local energy transfer and nonlocal interactions in homogeneous, isotropic turbulence. Phys. Fluids A 2, 413426.Google Scholar
Durbin, P. A. & Speziale, C. G. 1991 Local anisotropy in strained turbulence at high Reynolds numbers. Trans. ASME I: J. Fluids Engng. 113, 707709.Google Scholar
Fung, J. C. H., Hunt, J. C. R., Malik, N. A. & Perkins, R. A. 1992 Kinematic simulation of homogeneous turbulence by unsteady random Fourier modes. J. Fluid Mech. 236, 281318.Google Scholar
Gagne, Y. & Castaing, B. 1991 Une représentation universelle sans invariance globale d’échelle des spectres d’énergie en turbulence développée. C. R. Acad. Sci. Paris 312 (II), 441445.Google Scholar
George, W. K. 1989 The self-preservation of turbulent flows and its relation to initial conditions and coherent structures. In New Horizons in Turbulence (ed. W. K. George & R. Arndt, pp. 39674. Hemisphere.
George, W. K., Beutcher, P. D. & Arndt, R. E. A. 1984 Pressure spectra in turbulent free shear flows. J. Fluid Mech. 148, 155191.Google Scholar
Heisenberg, W. 1948 Zur Statischen Theorie der Turbulenz. Z. Phys. 124, 628657.Google Scholar
Hinze, J. O. 1975 Turbulence. McGraw-Hill.
Hunt, J. C. R., Buell, J. C. & Wray, A. A. 1987 Big whorls carry little whorls. In Proc. First Summer Program of the Center for Turbulence Research, Rep. CTR-S87, pp. 79–94 NASA Ames/Stanford University.
Hunt, J. C. R. & Vasilicos, J. C. 1991 Kolmogorov's contributions to the physical and geometrical understanding of small-scale turbulence and recent developments. Proc. R. Soc. Lond. A 434, 183210.Google Scholar
Jones, B. G., Adrian, R. J., Nithianandan, C. K. & Planchon, H. P. 1979 Spectra of turbulent static pressure fluctuations in jet mixing layers. AIAA J. 17, 449457.Google Scholar
Kim, J. 1989 On the structure of pressure fluctuations in simulated turbulent channel flow. J. Fluid Mech. 205, 421451.Google Scholar
Kim, J., Moin, P. & Moser, R. 1987 Turbulence statistics in fully developed channel flow at low Reynolds number. J. Fluid Mech. 177, 133166.Google Scholar
Klebanoff, P. S. 1955 Characteristics of turbulence in a boundary layer with zero pressure gradient. NACA Rep. 1247.Google Scholar
Kolmogorov, A. N. 1941 The local structure of turbulence in an incompressible fluid with very large Reynolds numbers. Dokl. Akad. Nauk. SSSR 30, 301305.Google Scholar
Laufer, J. 1953 The structure of turbulence in fully developed pipe flow. NACA Rep. 1174.Google Scholar
Mestayer, P. 1982 Local isotropy and anisotropy in a high-Reynolds-number turbulent boundary layer. J. Fluid Mech. 125, 475503.Google Scholar
Mestayer, P. & Chambaud, P. 1979 Some limitation to measurements of turbulence micro-structure with hot and cold-wires. Boundary-Layer Met. 16, 311329.Google Scholar
Monin, A. S. & Yaglom, A. M. 1975 Statistical fluid mechanics. In Mechanics of Turbulence (ed. J. L. Lumley, vol. 2. MIT Press.
Oboukhov, A. M. 1949 Pressure fluctuations in a turbulent flow. Dokl. Akad. Nauk SSSR 66, 1720.Google Scholar
Oboukhov, A. M. & Yaglom, A. M. 1951 Microstructure of a turbulent flow. Prikl. Math. Mekh. 15, 3–26 (translated as NACA Rep. TM 1350, June 1953).Google Scholar
Panchev, S. 1971 Random Functions and Turbulence. Pergamon.Google Scholar
Phillips, O. M. 1991 The Kolmogorov spectrum and its oceanic cousins: a review. Proc. R. Soc. Lond. A 434, 125138.Google Scholar
Sanada, T. 1992 Comment on the dissipation-range spectrum in turbulent flows. Phys. Fluids A 4, 10861087.Google Scholar
Spalart, P. R. 1988 Direct simulation of a turbulent boundary layer up to Rθ = 1410. J. Fluid Mech. 187, 6198.Google Scholar
Sreenivasan, K. R. 1991 On local isotropy of passive scalars in turbulent shear flows. Proc. R. Soc. Lond. A 434, 165182.Google Scholar
Uberoi, M. S. 1953 Quadruple velocity correlations and pressure fluctuations in isotropic turbulence. J. Aero. Sci. 20, 197204.Google Scholar
Van Atta, C. W. 1977 Second-order spectral local isotropy in turbulent scalar fields. J. Fluid Mech. 80, 609615.Google Scholar
Van Atta, C. W. 1991 Local isotropy of the smallest scales of turbulent scalar and velocity fields. Proc. R. Soc. Lond. A 434, 139147.Google Scholar
Zhu, Y., Antonia, R. A. & Kim, J. 1993 Velocity and temperature derivative measurements in the near-wall region of a turbulent duct flow. To be presented at Int. Conf. on Near-Wall Turbulent Flows, Tempe, Arizona.Google Scholar