Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-09T21:59:50.387Z Has data issue: false hasContentIssue false

Inviscid quasi-geostrophic flow over topography: testing statistical mechanical theory

Published online by Cambridge University Press:  26 April 2006

William J. Merryfield
Affiliation:
Institute of Ocean Sciences, Sidney, B.C., Canada, V8L 4B2
Greg Holloway
Affiliation:
Institute of Ocean Sciences, Sidney, B.C., Canada, V8L 4B2

Abstract

Numerical simulations are employed in a detailed test of the statistical mechanical description of topographic turbulence. Predictions of steady flows correlated with topography are given particular attention. Agreement between numerical and statistical mechanical results is demonstrated for a large range of parameter values, and over an ensemble of random choices of topography and initial conditions.

Type
Research Article
Copyright
© 1996 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alvarez, A., Tintore, J., Holloway, G., Eby, M. & Beckers, J. M. 1994 Effect of topographic stress on the circulation in the western Mediterranean. J. Geophys. Res. 99, 1605316064.Google Scholar
Basdevant, C. & Sadourny, R. 1975 Ergodic properties of inviscid truncated models of two- dimensional incompressible flows. J. Fluid Mech. 69, 673688.Google Scholar
Bretherton, F. P. & Haidvogel, D. B. 1976 Two-dimensional turbulence above topography. J. Fluid Mech. 78, 129154.Google Scholar
Canuto, C, Hussaini, M. Y., Quarteroni, A. & Zang, T. A. 1988 Spectral Methods in Fluid Mechanics. Springer.
Carnevale, G. F. & Frederiksen, J. S. 1987 Nonlinear stability and statistical mechanics of flow over topography. J. Fluid Mech. 175, 157181.Google Scholar
Carnevale, G. F., Frisch, U. & Salmon, R. 1981 H theorems in statistical fluid dynamics. J. Phys. A 14, 17011718.Google Scholar
Cummins, P. F. 1992 Inertial gyres in decaying and forced geostrophic turbulence. J. Mar. Res. 50, 545566.Google Scholar
Cummins, P. F. & Holloway, G. 1994 On eddy-topographic stress representation. J. Phys. Oceanogr. 24, 700706.Google Scholar
Eby, M. & Holloway, G. 1994 Sensitivity of a large-scale ocean model to a parameterization of topographic stress. J. Phys. Oceanogr. 24, 25772588.Google Scholar
Fox, D. G. & Orszag, S. A. 1973 Inviscid dynamics of two-dimensional turbulence. Phys. Fluids 16, 169171.Google Scholar
Frederiksen, J. S., Dix, M. R. & Kepert, S. M. 1995 Systematic energy errors and the tendency towards canonical equilibrium in atmospheric circulation models. J. Atmos. Sci. (to appear).Google Scholar
Frederiksen, J. S. & Sawford, B. L. 1980 Statistical dynamics of two-dimensional inviscid flow on a sphere. J. Atmos. Sci. 37, 717732.Google Scholar
Frederiksen, J. S. & Sawford, B. L. 1981 Topographic waves in nonlinear and linear spherical barotropic models. J. Atmos. Sci. 38, 6986.Google Scholar
Fyfe, J. & Marinone, G. 1995 On the role of unresolved eddies in a model of the residual currents in the central Strait of Georgia, B.C. Atmos.-Oceans 33, 613619.Google Scholar
Griffa, A., Chassignet, E. P., Coles, V. & Olson, D. B. 1995 Inertial gyre solutions from a primitive equation ocean model. J. Mar. Res. (submitted).Google Scholar
Griffa, A. & Salmon, R. 1989 Wind-driven ocean circulation and equilibrium statistical mechanics. J. Mar. Res. 47, 45792.Google Scholar
Holloway, G. 1986. Eddies, waves, circulation and mixing: statistical geofluid mechanics. Ann. Rev. Fluid Mech. 18, 91147.
Holloway, G. 1992 Representing topographic stress for large-scale ocean models. J. Phys. Oceanogr. 22, 10331046.Google Scholar
Holloway, G., Sou, T. & Eby, M. 1995 Dynamics of circulation of the Japan Sea. J. Mar. Res. 53, 539569.Google Scholar
Kraichnan, R. 1967 Inertial ranges in two-dimensional turbulence. Phys. Fluids 10, 14171423.Google Scholar
Miller, J. 1990 Statistical mechanics of Euler equations in two dimensions. Phys. Rev. Lett. 22, 21372140.Google Scholar
Pasmanter, R. A. 1994 On long-loved vortices in 2-D viscous flows, most probable states on inviscid 2-D flows and a soliton equation. Phys. Fluids 6, 12361241.Google Scholar
Press, W. H., Flannery, B. P., Teukolsky, S. A. & Vetterling, W. T. 1986 Numerical Recipies, 3.4. Cambridge University Press.
Robert, R. & Sommeria, J. 1991 Statistical equilibrium states for two-dimensional flows. J. Fluid Mech. 229, 291310.Google Scholar
Salmon, R. 1982 Geostrophic turbulence. In Topics in Ocean Physics, Proc. Intl. School Phys. ‘Enrico Fermi’, Varenna, Italy, pp. 3078.
Salmon, R., Holloway G. & Hendershott, M. C. 1976 The equilibrium statistical mechanics of simple quasi-geostrophic models. J. Fluid Mech. 75, 691703.Google Scholar
Sou, T., Holloway, G. & Eby, M. 1975 Effects of topographic stress on Caribbean Sea circulation. J. Geophys. Res. (submitted).Google Scholar
Treguier, A. M. 1989 Topographically generated steady currents in barotropic turbulence. Geophys. Astrophys. Fluid Dyn. 47, 4368.Google Scholar
Wang, J. & Vallis, G. K. 1994 Emergence of Fofonoff states in inviscid and viscous ocean models. J. Mar. Res. 52, 83127.Google Scholar
Zou, J. & Holloway, G. 1994 Entropy maximization tendency in topographic turbulence. J. Fluid Mech. 263, 361374.Google Scholar