Hostname: page-component-5f745c7db-q8b2h Total loading time: 0 Render date: 2025-01-06T07:31:04.258Z Has data issue: true hasContentIssue false

The inviscid axisymmetric stability of the supersonic flow along a circular cylinder

Published online by Cambridge University Press:  26 April 2006

Peter W. Duck
Affiliation:
Department of Mathematics, University of Manchester, Manchester M13 9PL, UK

Abstract

The supersonic flow past a thin straight circular cylinder is investigated. The associated boundary-layer flow (i.e. the velocity and temperature field) is computed; the asymptotic, far downstream solution is obtained, and compared with the full numerical results.

The inviscid, linear, axisymmetric (temporal) stability of this boundary layer is also studied. A so-called ‘doubly generalized’ inflexion condition is derived, which is a condition for the existence of so-called ‘subsonic’ neutral modes. The eigenvalue problem (for the complex wavespeed) is computed for two free-stream Mach numbers (2.8 and 3.8), and this reveals that curvature has a profound effect on the stability of the flow. The first unstable inviscid mode is seen to disappear rapidly as curvature is introduced, whilst the second (and generally the most important) mode suffers a substantially reduced amplification rate.

Type
Research Article
Copyright
© 1990 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Chandrasekhar, S. 1943 Rev. Mod. Phys. 15, 1.
Edwards, R. M. & Cheng, H. K. 1966 AIAA J. 4, 1556.
Einstein, A. 1908 Z. Elektrochem. 14, 251.
Erdelyi, A. 1956 Asymptotic Expansions, p. 29. Dover.
Fernández de la Mora, J. 1982 Phys. Rev. A 25, 1108
Fernández de la Mora, J. & Fernández-Feria, R. 1987 Phys. Fluids 30, 748.
Fernández de la Mora, J. & Riesco-Chueca, P. 1988 J. Fluid Mech. 195, 1.
Fernández de la Mora, J. & Rosner, D. E. 1982 J. Fluid Mech. 125, 459.
Fernández-Feria, R. 1989 Phys. Fluids A 1, 474
Fernández-Feria, R. & Fernández de la Mora, J. 1987a J. Fluid Mech. 179, 21.
Fernández-Feria, R. & Fernández de la Mora, J. 1987b J. Statist. Phys. 48, 901.
Freeman, N. C. 1967 AIAA J. 5, 1696.
Freeman, N. C. & Grundy, R. E. 1968 J. Fluid Mech. 31, 723.
Friedlander, S. K. 1977 Smoke, Dust and Haze. Wiley.
Gupta, D. & Peters, M. H. 1986 J. Colloid Interface Sci. 110, 286.
Hamel, B. B. & Willis, D. R. 1966 Phys. Fluids 9, 829.
Harris, W. L. & Bienkowski, G. K. 1970 Phys. Fluids 14, 2652.
Kramers, H. A. 1940 Physica (Utrecht) 7, 284.
Menon, S. V. G., Kumar, V. & Sahni, D. C. 1986 Physica 151 A, 63.
Nguyen, T. K. & Andres, R. P. 1981 In Rarefied Gas Dynamics, vol. 74, p. 627. AIAA.
O'Brien, J. 1990 J. Colloid Interface Sci. 134, 497.
Resibois, P. & DeLeener, M. 1977 Classical Kinetic Theory of Fluids. Wiley-Interscience.
Riesco-Chueca, P., Fernández-Feria, R. & Fernández de la Mora. J. 1986 In Rarefied Gas Dynamics (ed. V. Boffi & C. Cercignani), p. 283. Stuttgart: Teubner.
Wang Chang, C. W. & Uhlenbeck, G. E. 1970 In Studies in Statistical Mechanics (ed. J. de Boer & G. E. Uhlenbeck), vol. V, pp. 8992. North Holland.
Willis, R. & Hamel, B. B. 1967 In Rarefied Gas Dynamics (ed. J. Brundin), p. 827. Academic.