Hostname: page-component-5f745c7db-j9pcf Total loading time: 0 Render date: 2025-01-06T11:15:30.890Z Has data issue: true hasContentIssue false

Inverse transfer of magnetic helicity in direct numerical simulations of compressible isothermal turbulence: helical transfers

Published online by Cambridge University Press:  25 June 2021

Jean-Mathieu Teissier*
Affiliation:
Technische Universität Berlin, ER 3-2, Hardenbergstrasse 36a, 10623Berlin, Germany
Wolf-Christian Müller
Affiliation:
Technische Universität Berlin, ER 3-2, Hardenbergstrasse 36a, 10623Berlin, Germany Max-Planck/Princeton Center for Plasma Physics, Princeton, NJ08544, USA
*
Email address for correspondence: [email protected]

Abstract

The role of the different helical components of the magnetic and velocity fields in the inverse spectral transfer of magnetic helicity is investigated through Fourier shell-to-shell transfer analysis. Magnetic helicity transfer analysis is performed on chosen data from direct numerical simulations of homogeneous isothermal compressible magnetohydrodynamic turbulence, subject to both a large-scale mechanical forcing and a small-scale helical electromotive driving. The root mean square Mach number of the hydrodynamic turbulent steady state taken as initial condition varies from 0.1 to about 11. Three physical phenomena can be distinguished in the general picture of the spectral transfer of magnetic helicity towards larger spatial scales: local inverse transfer (LIT), non-local inverse transfer (NLIT) and local direct transfer (LDT). A shell decomposition allows these three phenomena to be associated with clearly distinct velocity scales: the LDT is driven by large-scale velocity shear and associated with a direct magnetic energy cascade; the NLIT is mediated by small-scale velocity fluctuations which couple small- and large-scale magnetic structures; and the LIT by the intermediate spatial scales of the velocity field. The helical decomposition shows that like-signed helical interactions and interactions with the compressive velocity field are predominant. The latter has a high impact on the LDT and on the NLIT, but plays no role for the LIT. The locality and relative strength of the different helical contributions are mainly determined by the triad helical geometric factor, derived here in the compressible case.

Type
JFM Papers
Copyright
© The Author(s), 2021. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Alexakis, A. 2017 Helically decomposed turbulence. J. Fluid Mech. 812, 752770.CrossRefGoogle Scholar
Alexakis, A. & Biferale, L. 2018 Cascades and transitions in turbulent flows. Phys. Rep. 767-769, 1101.CrossRefGoogle Scholar
Alexakis, A., Mininni, P.D. & Pouquet, A. 2006 On the inverse cascade of magnetic helicity. Astrophys. J. 640, 335343.CrossRefGoogle Scholar
Alfvén, H. 1942 On the existence of electromagnetic-hydrodynamic waves. Ark. Mat. Astron. Fys. 29B (2), 17.Google Scholar
Aluie, H. 2013 Scale decomposition in compressible turbulence. Phys. D 247, 5465.CrossRefGoogle Scholar
Aluie, H. 2017 Coarse-grained incompressible magnetohydrodynamics: analyzing the turbulent cascades. New J. Phys. 19, 025008.CrossRefGoogle Scholar
Aluie, H. & Eyink, G.L. 2010 Scale locality of magnetohydrodynamic turbulence. Phys. Rev. Lett. 104, 081101.CrossRefGoogle ScholarPubMed
Balsara, D.S. 2010 Multidimensional HLLE riemann solver: application to euler and magnetohydrodynamic flows. J. Comput. Phys. 229, 19701993.CrossRefGoogle Scholar
Balsara, D.S. 2012 Self-adjusting, positivity preserving high order schemes for hydrodynamics and magnetohydrodynamics. J. Comput. Phys. 231, 75047517.CrossRefGoogle Scholar
Balsara, D. & Pouquet, A. 1999 The formation of large-scale structures in supersonic magnetohydrodynamic flows. Phys. Plasmas 6 (1), 8999.CrossRefGoogle Scholar
Berger, M.A. 1999 Introduction to magnetic helicity. Plasma Phys. Control. Fusion 41, B167B175.CrossRefGoogle Scholar
Bieber, J.W., Evenson, P.A. & Matthaeus, W.H. 1987 Magnetic helicity of the parker field. Astrophys. J. 315, 700705.CrossRefGoogle Scholar
Biferale, L., Musacchio, S. & Toschi, F. 2012 Inverse energy cascade in three-dimensional isotropic turbulence. Phys. Rev. Lett. 108, 164501.CrossRefGoogle ScholarPubMed
Brandenburg, A. 2001 The inverse cascade and nonlinear alpha-effect in simulations of isotropic helical hydromagnetic turbulence. Astrophys. J. 550, 824840.CrossRefGoogle Scholar
Brandenburg, A. & Lazarian, A. 2013 Astrophysical hydromagnetic turbulence. Space Sci. Rev. 178, 163200.CrossRefGoogle Scholar
Brandenburg, A. & Subramanian, K. 2005 Astrophysical magnetic fields and nonlinear dynamo theory. Phys. Rep. 417, 1209.CrossRefGoogle Scholar
Buchmüller, P. & Helzel, C. 2014 Improved accuracy of high-order WENO finite volume methods on cartesian grids. J. Sci. Comput. 61, 343368.CrossRefGoogle Scholar
Christensson, M., Hindmarsh, M. & Brandenburg, A. 2001 Inverse cascade in decaying three-dimensional magnetohydrodynamic turbulence. Phys. Rev. E 64, 056405.CrossRefGoogle ScholarPubMed
Colella, P. & Woodward, P.R. 1984 The piecewise parabolic method (PPM) for gas-dynamical simulations. J. Comput. Phys. 54, 174201.CrossRefGoogle Scholar
Elmegreen, B.G. & Scalo, J. 2004 Interstellar turbulence I: observations. Annu. Rev. Astron. Astrophys. 42, 211273.CrossRefGoogle Scholar
Escande, D.F., et al. 2000 Quasi-single-helicity reversed-field-pinch plasmas. Phys. Rev. Lett. 85 (8), 16621665.CrossRefGoogle ScholarPubMed
Evans, C.R. & Hawley, J.F. 1988 Simulation of magnetohydrodynamic flows: a constrained transport method. Astrophys. J. 332, 659677.CrossRefGoogle Scholar
Federrath, C. 2013 On the universality of supersonic turbulence. Mon. Not. R. Astron. Soc. 436, 12451257.CrossRefGoogle Scholar
Federrath, C., Roman-Duval, J., Klessen, R.S., Schmidt, W. & Mac Low, M.-M. 2010 Comparing the statistics of interstellar turbulence in simulations and observations, solenoidal versus compressive turbulence forcing. Astron. Astrophys. 512, A81.CrossRefGoogle Scholar
Frisch, U., Pouquet, A., Léorat, J. & Mazure, A. 1975 Possibility of an inverse cascade of magnetic helicity in magnetohydrodynamic turbulence. J. Fluid Mech. 68 (Part 4), 769778.CrossRefGoogle Scholar
Graham, J.P., Cameron, R. & Schüssler, M. 2010 Turbulent small-scale dynamo action in solar surface simulations. Astrophys. J. 714, 16061616.CrossRefGoogle Scholar
Graham, J.P., Mininni, P.D. & Pouquet, A. 2011 High Reynolds number magnetohydrodynamic turbulence using a Lagrangian model. Phys. Rev. E 84, 016314.CrossRefGoogle ScholarPubMed
Grete, P., O'Shea, B.W., Beckwith, K., Schmidt, W. & Christlieb, A. 2017 Energy transfer in compressible magnetohydrodynamic turbulence. Phys. Plasmas 24, 092311.CrossRefGoogle Scholar
Ketcheson, D.I. 2008 Highly efficient strong stability-preserving Runge-Kutta methods with low-storage implementations. Soc. Indus. Appl. Math. J. Sci. Comput. 30 (4), 21132136.Google Scholar
Kritsuk, A.G., Wagner, R. & Norman, M.L. 2013 Energy cascade and scaling in supersonic isothermal turbulence. J. Fluid Mech. 729, R1.CrossRefGoogle Scholar
Kumar, A. & Rust, D.M. 1996 Interplanetary magnetic clouds, helicity conservation, and current-core flux-ropes. J. Geophys. Res. 101, 667684.Google Scholar
Lessinnes, T., Plunian, F. & Carati, D. 2009 Helical shell models for MHD. Theor. Comput. Fluid Dyn. 23, 439450.CrossRefGoogle Scholar
Levy, D., Puppo, G. & Russo, G. 1999 Central WENO schemes for hyperbolic systems of conservation laws. Math. Model. Numer. Anal. 33 (3), 547571.CrossRefGoogle Scholar
Linkmann, M., Berera, A., McKay, M. & Jäger, J. 2016 Helical mode interactions and spectral transfer processes in magnetohydrodynamic turbulence. J. Fluid Mech. 791, 6196.CrossRefGoogle Scholar
Linkmann, M. & Dallas, V. 2016 Large-scale dynamics of magnetic helicity. Phys. Rev. E 94, 053209.CrossRefGoogle ScholarPubMed
Linkmann, M. & Dallas, V. 2017 Triad interactions and the bidirectional turbulent cascade of magnetic helicity. Phys. Rev. Fluids 2, 054605.CrossRefGoogle Scholar
Linkmann, M., Sahoo, G., McKay, M., Berera, A. & Biferale, L. 2017 Effects of magnetic and kinetic helicities on the growth of magnetic fields in laminar and turbulent flows by helical Fourier decomposition. Astrophys. J. 836, 26.CrossRefGoogle Scholar
Low, B.C. 1994 Magnetohydrodynamic processes in the solar corona: flares, coronal mass ejections, and magnetic helicity. Phys. Plasmas 1, 16841690.CrossRefGoogle Scholar
Malapaka, S.K. 2009 A study of magnetic helicity in decaying and forced 3D-MHD turbulence. PhD thesis, Universität Bayreuth.Google Scholar
Marrelli, L., Martin, P., Puiatti, M.E., Sarff, J.S., Chapman, B.E., Drake, J.R., Escande, D.F. & Masamune, S. 2021 The reversed field pinch. Nucl. Fusion 61, 023001.CrossRefGoogle Scholar
McCorquodale, P. & Colella, P. 2011 A high-order finite-volume method for conservation laws on locally refined grids. Commun. Appl. Math. Comput. Sci. 6 (1), 125.CrossRefGoogle Scholar
Meneguzzi, M., Frisch, U. & Pouquet, A. 1981 Helical and nonhelical turbulent dynamos. Phys. Rev. Lett. 47 (15), 10601064.CrossRefGoogle Scholar
Mininni, P.D. & Pouquet, A. 2009 Finite dissipation and intermittency in magnetohydrodynamics. Phys. Rev. E 80, 025401.CrossRefGoogle ScholarPubMed
Müller, W.-C., Malapaka, S.K. & Busse, A. 2012 Inverse cascade of magnetic helicity in magnetohydrodynamic turbulence. Phys. Rev. E 85, 015302.CrossRefGoogle ScholarPubMed
Núñez-de la Rosa, J. & Munz, C.-D. 2016 XTROEM-FV: a new code for computational astrophysics based on very high-order finite volume methods- I. Magnetohydrodynamics. Mon. Not. R. Astron. Soc. 455, 34583479.CrossRefGoogle Scholar
Plunian, F., Stepanov, R. & Verma, M.K. 2019 On uniqueness of transfer rates in magnetohydrodynamic turbulence. J. Plasma Phys. 85, 905850507.CrossRefGoogle Scholar
Pouquet, A., Frisch, U. & Léorat, J. 1976 Strong MHD helical turbulence and the nonlinear dynamo effect. J. Fluid Mech. 77 (part 2), 321354.CrossRefGoogle Scholar
Pouquet, A. & Patterson, G.S. 1978 Numerical simulation of helical magnetohydrodynamic turbulence. J. Fluid Mech. 85 (part 2), 305323.CrossRefGoogle Scholar
Rathmann, N.R. & Ditlevsen, P.D. 2019 Partial invariants, large-scale dynamo action, and the inverse transfer of magnetic helicity. Astrophys. J. 887, 95.CrossRefGoogle Scholar
Rusanov, V.V. 1961 The calculation of the interaction of non-stationary shock waves with barriers. Zh. Vychisl. Mat. Mat. Fiz. 1 (2), 267279. English: USSR Computational Mathematics and Mathematical Physics 1 (2), 304–320, 1962.Google Scholar
Stepanov, R., Frick, P. & Mizeva, I. 2015 Joint inverse cascade of magnetic energy and magnetic energy in MHD turbulence. Astrophys. J. Lett. 798, L35.CrossRefGoogle Scholar
Teissier, J.-M. 2020 Magnetic helicity inverse transfer in isothermal supersonic magnetohydrodynamic turbulence. PhD thesis, Technische Universität Berlin.CrossRefGoogle Scholar
Teissier, J.-M. & Müller, W.-C. 2021 Inverse transfer of magnetic helicity in direct numerical simulations of compressible isothermal turbulence: scaling laws. J. Fluid Mech. 915, A23.CrossRefGoogle Scholar
Verma, P.S., Teissier, J.-M., Henze, O. & Müller, W.-C. 2019 Fourth-order accurate finite-volume CWENO scheme for astrophysical MHD problems. Mon. Not. R. Astron. Soc. 482, 416437.CrossRefGoogle Scholar
Vishniac, E.T. & Cho, J. 2001 Magnetic helicity conservation and astrophysical dynamos. Astrophys. J. 550, 752760.CrossRefGoogle Scholar
Waleffe, F. 1992 The nature of triad interactions in homogeneous turbulence. Phys. Fluids A: Fluid Dyn. 4, 350363.CrossRefGoogle Scholar