Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-27T16:55:03.458Z Has data issue: false hasContentIssue false

Inverse Leidenfrost impacting drops

Published online by Cambridge University Press:  03 January 2025

Kindness Isukwem
Affiliation:
Mines Paris, PSL University, Centre for Material Forming (CEMEF), UMR CNRS 7635, rue Claude Daunesse, 06904 Sophia-Antipolis, France
Carole-Ann Charles
Affiliation:
Laboratoire Charles Coulomb (L2C), Université de Montpellier, CNRS, 34090 Montpellier, France
Ty Phou
Affiliation:
Laboratoire Charles Coulomb (L2C), Université de Montpellier, CNRS, 34090 Montpellier, France
Laurence Ramos
Affiliation:
Laboratoire Charles Coulomb (L2C), Université de Montpellier, CNRS, 34090 Montpellier, France
Christian Ligoure
Affiliation:
Laboratoire Charles Coulomb (L2C), Université de Montpellier, CNRS, 34090 Montpellier, France
Elie Hachem
Affiliation:
Mines Paris, PSL University, Centre for Material Forming (CEMEF), UMR CNRS 7635, rue Claude Daunesse, 06904 Sophia-Antipolis, France
Anselmo Pereira*
Affiliation:
Mines Paris, PSL University, Centre for Material Forming (CEMEF), UMR CNRS 7635, rue Claude Daunesse, 06904 Sophia-Antipolis, France
*
Email address for correspondence: [email protected]

Abstract

We investigate the spreading of falling ambient-temperature Newtonian drops after their normal impact on a quartz plate covered with a thin layer of liquid nitrogen. As a drop expands, liquid nitrogen evaporates, generating a vapour film that maintains the drop in levitation. Consequently, the latter spreads in inverse Leidenfrost conditions. Three drop-spreading regimes are observed: (i) inertio-capillary, (ii) inertio-viscous, and (iii) inertio-viscous-capillary. In the first regime, although the drop expansion is essentially driven by a competition between inertial and capillary stresses, it is also affected by viscous effects emerging from the vapour film, which ultimately favours the development of a shear flow within the drop. Interestingly, vapour film effects become marginal in both the second and third regimes, allowing the drop to undergo biaxial extension primarily. More specifically, in the inertio-viscous scenario, the expansion is driven by the balance between inertial and biaxial extensional viscous stresses in the drop. Finally, inertia, capillarity and drop viscosity are all relevant in the third regime. These physical mechanisms are underlined through a mixed approach combining experiments with multiphase three-dimensional numerical simulations in light of spreading dynamics analyses, energy transfer and scaling laws. Our results are rationalized in a two-dimensional diagram linking the drops’ maximum expansion and spreading time with the observed spreading regimes through a single dimensionless parameter given by the square root of the capillary number (the ratio of the viscous stress to the capillary stress).

JFM classification

Type
JFM Papers
Copyright
© The Author(s), 2025. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adda-Bedia, M., Kumar, S., Lechenault, F., Moulinet, S., Schillaci, M. & Vella, D. 2016 Inverse Leidenfrost effect: levitating drops on liquid nitrogen. Langmuir 17, 41794188.CrossRefGoogle Scholar
Arora, S., Fromental, J.-M., Mora, S., Phou, T., Ramos, L. & Ligoure, C. 2018 Impact of beads and drops on a repellent solid surface: a unified description. Phys. Rev. Lett. 120, 148003.CrossRefGoogle ScholarPubMed
Arora, S., Ligoure, C. & Ramos, L. 2016 Interplay between viscosity and elasticity in freely expanding liquid sheets. Phys. Rev. Fluids 1, 083302.CrossRefGoogle Scholar
Arora, S., Louhichi, A., Vlassopoulos, D., Ligoure, C. & Ramos, L. 2021 Instabilities in freely expanding sheets of associating viscoelastic fluids. Soft Matt. 17, 1093510945.CrossRefGoogle ScholarPubMed
Biance, A.-L., Clanet, C. & Quéré, D. 2003 Leidenfrost drops. Phys. Fluids 15, 16321637.CrossRefGoogle Scholar
Blackwell, B.C., Deetjen, M.E., Gaudio, J.E. & Ewoldt, R.H. 2015 Sticking and splashing in yield-stress fluid drop impacts on coated surfaces. Phys. Fluids 27, 043101.CrossRefGoogle Scholar
Bonito, A., Guermond, J.-L. & Lee, S. 2015 Numerical simulations of bouncing jets. Intl J. Numer. Meth. Fluids 80, 5375.CrossRefGoogle Scholar
Bonn, D., Eggers, J., Indekeu, J., Meunier, J. & Rolley, E. 2009 Wetting and spreading. Rev. Mod. Phys. 81, 739.CrossRefGoogle Scholar
Bordoloi, A.D. & Longmire, E.K. 2014 Drop motion through a confining orifice. J. Fluid Mech. 759, 520545.CrossRefGoogle Scholar
Boyer, F., Sandoval-Nava, E., Snoeijer, J.H., Dijksman, J.F. & Lohse, D. 2016 Drop impact of shear thickening liquids. Phys. Rev. Fluids 1, 013901.CrossRefGoogle Scholar
Carlson, A., Do-Quang, M. & Amberg, G. 2011 Dissipation in rapid dynamic wetting. J. Fluid Mech. 682, 213240.CrossRefGoogle Scholar
Charles, C.-A., Louhichi, A., Ramos, L. & Ligoure, C. 2021 Viscoelasticity and elastocapillarity effects in the impact of drops on a repellent surface. Soft Matt. 17, 58295837.CrossRefGoogle ScholarPubMed
Clanet, C., Béguin, C., Rhichard, D. & Quéré, D. 2004 Maximal deformation of an impacting drop. J. Fluid Mech. 517, 199208.CrossRefGoogle Scholar
Comtet, J., Keshavarz, B. & Bush, J.W.M. 2016 Drop impact and capture on a thin flexible fiber. Soft Matt. 12, 149156.CrossRefGoogle ScholarPubMed
Cooper-White, J.J., Crooks, R.C. & Boger, D.V. 2002 A drop impact study of worm-like viscoelastic surfactant solutions. Colloids Surf. (A) 210, 105123.CrossRefGoogle Scholar
Coupez, T. & Hachem, E. 2013 Solution of high-Reynolds incompressible flow with stabilized finite element and adaptive anisotropic meshing. Comput. Meth. Appl. Mech. Engng 267, 6585.CrossRefGoogle Scholar
Crooks, R.C. & Boger, D.V. 2000 Influence of fluid elasticity on drops impacting on dry surfaces. J. Rheol. 44, 973996.CrossRefGoogle Scholar
Duez, C., Ybert, C., Clanet, C. & Bocquet, L. 2010 Wetting controls separation of inertial flows from solid surfaces. Phys. Rev. Lett. 104, 084503.CrossRefGoogle ScholarPubMed
Eggers, J., Fontelos, M.A., Josserand, C. & Zaleski, S. 2010 Drop impact after impact on a solid wall: theory and simulations. Phys. Fluids 22, 062101.CrossRefGoogle Scholar
Fedorchenko, A.I., Wang, A.-B. & Wang, Y.-H. 2005 Effect of capillary and viscous forces on spreading of a liquid drop impinging on a solid surface. Phys. Fluids 17, 093104.CrossRefGoogle Scholar
Garmett, W. 1878 Leidenfrost’ phenomenon. Nature 17, 466.CrossRefGoogle Scholar
Gauthier, A., Diddens, C., Proville, R., Lohse, D. & van der Meer, D. 2019 Self-propulsion of inverse Leidenfrost drops on a cryogenic bath. Proc. Natl Acad. Sci. USA 116, 11741179.CrossRefGoogle ScholarPubMed
Graeber, G., Regulagadda, K., Hodel, P., Kuttel, C., Landolf, D., Schutzius, T.M. & Poulikakos, D. 2021 Leidenfrost droplet trampolining. Nat. Commun. 12, 17.CrossRefGoogle ScholarPubMed
Guo, Y. & Lian, Y. 2018 Numerical investigation of oblique impact of multiple drops on thin liquid film. J. Colloid Interface Sci. 530, 586594.CrossRefGoogle ScholarPubMed
Hachem, E., Khalloufi, M., Bruchon, J., Valette, R. & Mesri, Y. 2016 Unified adaptive variational multiscale method for two phase compressible and incompressible flows. Comput. Meth. Appl. Mech. Engng 308, 238255.CrossRefGoogle Scholar
Hall, R.S., Board, S.J., Clare, A.J., Duffey, R.B., Playle, T.S. & Poole, D.H. 1969 Inverse Leidenfrost phenomenon. Nature 224, 266267.CrossRefGoogle Scholar
Isukwem, K., Godefroid, G., Monteux, C., Bouttes, D., Castellani, R., Hachem, E., Valette, R. & Pereira, A. 2024 b The role of viscoplastic drop shape in impact. J. Fluid Mech. 978, A1.CrossRefGoogle Scholar
Isukwem, K., Hachem, E. & Pereira, A. 2024 a Etude théorique et numérique sur l’étalement d'objects viscoplastiques bidimensionnels impactant une surface solide. Rhélogie 45, 3543.Google Scholar
Isukwem, K., Nemer, R., Hachem, E. & Pereira, A. 2024 c Viscoplastic elliptical objects impacting a solid surface. Phys. Fluids 36, 033125.CrossRefGoogle Scholar
Ji, H., Chopp, D. & Dolbow, J.E. 2002 A hybrid extended finite element/level set method for modeling phase transformations. Intl J. Numer. Meth. Engng 54, 12091233.CrossRefGoogle Scholar
Josserand, C. & Thoroddsen, S.T. 2016 Drop impact of yield-stress fluids. Annu. Rev. Fluid Mech. 48, 365391.CrossRefGoogle Scholar
Khalloufi, M., Mesri, Y., Valette, R., Massoni, E. & Hachem, E. 2016 High fidelity anisotropic adaptive variational multiscale method for multiphase flows with surface tension. Comput. Meth. Appl. Mech. Engng 307, 4467.CrossRefGoogle Scholar
Kumar, A., Tripathy, A., Nam, Y., Lee, C. & Sen, P. 2018 Effect of geometrical parameters on rebound of impacting droplets on leaky superhydrophobic meshes. Soft Matt. 14, 15711580.CrossRefGoogle ScholarPubMed
Laan, N., de Bruin, K.G., Bartolo, D., Josserand, C. & Bonn, D. 2014 Maximum diameter of impacting liquid droplets. Phys. Rev. Appl. 2, 044018.CrossRefGoogle Scholar
LeClear, S., LeClear, J., Abhijeet, , Park, K.-C. & Choi, W. 2016 Drop impact on inclined superhydrophobic surfaces. J. Colloid Interface Sci. 461, 114121.CrossRefGoogle ScholarPubMed
Lee, J.B., Laan, N., de Bruin, K.G., Skantzaris, G., Shahidzadeh, N., Derome, D., Carmeliet, J. & Bonn, D. 2015 Universal rescaling of drop impact on smooth and rough surfaces. J. Fluid Mech. 786, R4.CrossRefGoogle Scholar
Lee, S.-H., Harth, K., Rump, M., Kim, M., Lohse, D., Fezzaa, K. & Je, J.H. 2020 Drop impact on hot plates: contact times, lift-off and the lamella rupture. Soft Matt. 16, 79357949.CrossRefGoogle ScholarPubMed
Leidenfrost, J.G. 1756 De aquae communis nonnullis qualitatibus tractatus. Ovenius, Duisburg, Germany.Google Scholar
Lorenceau, E., Clanet, C. & Quéré, D. 2004 Capturing drops with a thin fiber. J. Colloid Interface Sci. 279, 192197.CrossRefGoogle ScholarPubMed
Lorenceau, E. & Quéré, D. 2003 Drops impacting a sieve. J. Colloid Interface Sci. 263, 244249.CrossRefGoogle ScholarPubMed
Louhichi, A., Charles, C.-A., Phou, T., Vlassopoulos, D., Ramos, L. & Ligoure, C. 2020 Biaxial extensional viscous dissipation in sheets expansion formed by impact of drops of Newtonian and non-Newtonian fluids. Phys. Rev. Fluids 5, 053602.CrossRefGoogle Scholar
Luu, L.-H. & Forterre, Y. 2009 Drop impact of yield-stress fluids. J. Fluid Mech. 632, 301327.CrossRefGoogle Scholar
Luu, L.-H. & Forterre, Y. 2014 Giant drag reduction in complex fluid drops on rough hydrophobic surfaces. Phys. Rev. Lett. 110, 184501.CrossRefGoogle Scholar
Modak, C.D., Kumar, A., Tripathy, A. & Sen, P. 2020 Drop impact printing. Nat. Commun. 11, 111.CrossRefGoogle ScholarPubMed
Murphy, S.V. & Atala, A. 2014 3D bioprinting of tissues and organs. Nat. Biotechnol. 32, 773–785.CrossRefGoogle ScholarPubMed
Oishi, C.M., Thompson, R.L. & Martins, F.P. 2019 Normal and oblique drop impact of yield-stress fluids with thixotropic effects. J. Fluid Mech. 876, 642679.CrossRefGoogle Scholar
Olsson, E. & Kreiss, G. 2005 A conservative level set method for two phase flow. J. Comput. Phys. 210, 225246.CrossRefGoogle Scholar
Osher, S. & Fedkiw, R. 2001 Level-set methods: an overview and some recent results. J. Comput. Phys. 169, 463502.CrossRefGoogle Scholar
Osher, S. & Sethian, J.-A. 1988 Fronts propagating with curvature dependent speed: algorithms based on Hamilton–Jacobi formulations. J. Comput. Phys. 79, 1249.CrossRefGoogle Scholar
Pereira, A., Hachem, E. & Valette, R. 2020 Inertia-dominated coiling instabilities of power-law fluids. J. Non-Newtonian Fluid Mech. 282, 104321.CrossRefGoogle Scholar
Pereira, A., Larcher, A., Hachem, E. & Valette, R. 2019 Capillary, viscous, and geometrical effects on the buckling of power-law fluid filaments under compression stresses. Comput. Fluids 190, 514519.CrossRefGoogle Scholar
Quéré, D. 2008 Wetting and roughness. Annu. Rev. Fluid Mech. 38, 7199.Google Scholar
Quetzeri-Santiago, M.A., Yokoi, K., Castrejon-Pita, A.A. & Castrejon-Pita, R. 2019 Role of the dynamic contact angle on splashing. Phys. Rev. Lett. 122, 16.CrossRefGoogle ScholarPubMed
Ramírez-Soto, O., Sanjay, V., Lohse, D., Pham, J.T. & Vollmer, D. 2020 Lifting a sessile oil drop from a superamphiphobic surface with an impacting one. Sci. Adv. 6, 110.CrossRefGoogle ScholarPubMed
Rein, M. 1993 Phenomena of liquid drop impact on solid and liquid surfaces. Fluid Dyn. Res. 12, 6193.CrossRefGoogle Scholar
Riber, S., Valette, R., Mesri, Y. & Hachem, E. 2016 Adaptive variational multiscale method for Bingham flows. Comput. Fluids 138, 5160.CrossRefGoogle Scholar
Richard, D., Clanet, C. & Quéré, D. 2002 Contact time of a bouncing drop. Nature 417, 811.CrossRefGoogle ScholarPubMed
Roisman, I.V., Prunet-Foch, B., Tropea, C. & Vignes-Adler, M. 2002 Multiple drop impact onto a dry solid substrate. J. Colloid Interface Sci. 256, 396410.CrossRefGoogle Scholar
Ryu, S., Sen, P., Nam, Y. & Lee, C. 2017 Water penetration through a superhydrophobic mesh during a drop impact. Phys. Rev. Lett. 118, 14501.CrossRefGoogle ScholarPubMed
Soto, D., Girard, H.-L., Le Helloco, A., Binder, T., Quéré, D. & Varanasi, K.K. 2018 Droplet fragmentation using a mesh. Phys. Rev. Fluids 3, 083602.CrossRefGoogle Scholar
Su, M.-J., Luo, Y., Chu, G.-W., Cai, Y., Le, Y., Zhang, L.-L. & Chen, J.-F. 2020 Dispersion behaviors of droplet impacting on wire mesh and process intensification by surface micro/nano-structure. Chem. Engng Sci. 219, 113.CrossRefGoogle Scholar
Valette, R., Hachem, E., Khalloufi, M., Pereira, A., Mackley, M.R. & Butler, S.A. 2019 The effect of viscosity, yield stress, and surface tension on the deformation and breakup profiles of fluid filaments stretched at very high velocities. J. Non-Newtonian Fluid Mech. 263, 130139.CrossRefGoogle Scholar
Valette, R., Pereira, A., Riber, S., Sardo, L., Larcher, A. & Hachem, E. 2021 Viscoplastic dam-breaks. J. Non-Newtonian Fluid Mech. 287, 121.CrossRefGoogle Scholar
Vijayavenkataraman, S., Yan, W.-C., Lu, W.F., Wang, C.-H. & Fuh, J.Y.H. 2018 3D bioprinting of tissues and organs for regenerative medicine. Adv. Drug Deliv. Rev. 132, 296332.CrossRefGoogle ScholarPubMed
Villermaux, E. & Bossa, B. 2011 Drop fragmentation on impact. J. Fluid Mech. 668, 412435.CrossRefGoogle Scholar
Wang, G., Fei, L., Lei, T., Wang, Q. & Luo, K.H. 2022 Droplet impact on a heated porous plate above the Leidenfrost temperature: a lattice Boltzmann study. Phys. Fluids 34, 093319.CrossRefGoogle Scholar
Worthington, A.M. 1883 On impact with a liquid surface. Proc. R. Soc. Lond. 34, 217230.Google Scholar
Yarin, A.L. 2006 Drop impact dynamics: splashing, spreading, receding, bouncing $\ldots$. Annu. Rev. Fluid Mech. 38, 159192.CrossRefGoogle Scholar