Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-10T05:51:28.503Z Has data issue: false hasContentIssue false

Interrelation of phase-averaged volume force and capacitance of dielectric barrier discharge plasma actuators

Published online by Cambridge University Press:  14 November 2016

M. Kuhnhenn*
Affiliation:
Institute for Fluid Mechanics and Aerodynamics, Technische Universität Darmstadt, Flughafenstraße 19, 64347 Griesheim, Germany
B. Simon
Affiliation:
Institute for Fluid Mechanics and Aerodynamics, Technische Universität Darmstadt, Flughafenstraße 19, 64347 Griesheim, Germany
I. Maden
Affiliation:
Institute for Fluid Mechanics and Aerodynamics, Technische Universität Darmstadt, Flughafenstraße 19, 64347 Griesheim, Germany
J. Kriegseis
Affiliation:
Institute of Fluid Mechanics, Karlsruhe Institute of Technology (KIT), Kaiserstraße 10, 76131 Karlsruhe, Germany
*
Email address for correspondence: [email protected]

Abstract

Simultaneous measurements of the phase-averaged velocity distribution and the underlying discharge quantities of a dielectric barrier discharge plasma actuator (PA) are performed at $10~\text{k}\text{Hz}$ discharge frequency to investigate the interplay of the discharge and the surrounding flow. The underlying velocity information for the force estimation is obtained by means of phase-averaged particle image velocimetry; the discharge quantities are determined from a Lissajous-figure analysis. The results uncover a clear cause–effect relation between the phase-dependent effective discharge capacitance of the PA and the resulting spatiotemporal volume-force distributions. From this novel insight, it must be concluded that the instantaneous effective discharge intensity dominates the momentum-transfer rate rather than the formerly assumed operating voltage.

Type
Rapids
Copyright
© 2016 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Benard, N., Debien, A. & Moreau, E. 2013 Time-dependent volume force produced by a non-thermal plasma actuator from experimental velocity field. J. Phys. D: Appl. Phys. 46, 245201.Google Scholar
Benard, N. & Moreau, E. 2011 On the vortex dynamic of airflow reattachment forced by a single non-thermal plasma discharge actuator. Flow Turbul. Combust. 87 (1), 131.Google Scholar
Benard, N. & Moreau, E. 2014 Electrical and mechanical characteristics of surface ac dielectric barrier discharge plasma actuators applied to airflow control. Exp. Fluids 55 (11), 1846.Google Scholar
Boeuf, J. P., Lagmich, Y. & Pitchford, L. C. 2009 Contribution of positive and negative ions to the electrohydrodynamic force in a dielectric barrier discharge plasma actuator operating in air. J. Appl. Phys. 106 (2), 023115.Google Scholar
Debien, A., Benard, N., David, L. & Moreau, E. 2012 Unsteady aspect of the electrohydrodynamic force produced by surface dielectric barrier discharge actuators. Appl. Phys. Lett. 100, 013901.Google Scholar
Dörr, P. C. & Kloker, M. J. 2015 Numerical investigation of plasma-actuator force-term estimations from flow experiments. J. Phys. D: Appl. Phys. 48 (39), 395203.Google Scholar
Duchmann, A., Simon, B., Tropea, C. & Grundmann, S. 2014 Dielectric barrier discharge plasma actuators for in-flight transition delay. AIAA J. 52 (2), 358367.Google Scholar
Durscher, R. & Roy, S. 2012 Evaluation of thrust measurement techniques for dielectric barrier discharge actuators. Exp. Fluids 53 (4), 11651176.Google Scholar
Enloe, C. L., McHarg, M. G. & McLaughlin, T. E. 2008 Time-correlated force production measurements of the dielectric barrier discharge plasma aerodynamic actuator. J. Appl. Phys. 103, 073302.CrossRefGoogle Scholar
Gibalov, V. I. & Pietsch, G. J. 2000 The development of dielectric barrier discharges in gas gaps and on surfaces. J. Phys. D: Appl. Phys. 33 (20), 2618.Google Scholar
Kotsonis, M. 2015 Diagnostics for characterisation of plasma actuators. Meas. Sci. Technol. 26 (9), 092001.Google Scholar
Kriegseis, J., Möller, B., Grundmann, S. & Tropea, C. 2011 Capacitance and power consumption quantification of dielectric barrier discharge (dbd) plasma actuators. J. Electrostat. 69, 302312.CrossRefGoogle Scholar
Kriegseis, J., Schwarz, C., Tropea, C. & Grundmann, S. 2013 Velocity-information-based force-term estimation of dielectric-barrier discharge plasma actuators. J. Phys. D: Appl. Phys. 46, 055202.Google Scholar
Kriegseis, J., Simon, B. & Grundmann, S. 2016 Towards in-flight applications? A review on dielectric barrier discharge-based boundary-layer control. Appl. Mech. Rev. 68 (2), 020802.Google Scholar
Manley, T. C. 1943 The electric characteristics of the ozonator discharge. J. Electrochem. Soc. 84 (1), 8396.Google Scholar
Neumann, M., Friedrich, C., Czarske, J., Kriegseis, J. & Grundmann, S. 2013 Determination of the phase-resolved body force produced by a dielectric barrier discharge plasma actuator. J. Phys. D: Appl. Phys. 46, 042001.Google Scholar
Orlov, D. M., Font, G. I. & Edelstein, D. 2008 Characterization of discharge modes of plasma actuators. AIAA J. 46 (12), 31423148.Google Scholar
Raffel, M., Willert, C., Wereley, S. & Kompenhans, J. 2007 Particle Image Velocimetry: A Practical Guide. Springer.Google Scholar
Wilke, J. B.2009 Aerodynamische Strömungssteuerung mittels dielektrischen Barriereentladungs-Plasmaaktuatoren. PhD thesis, DLR Göttingen, Germany.Google Scholar