Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-09T21:51:22.104Z Has data issue: false hasContentIssue false

Internal wave beam propagation in non-uniform stratifications

Published online by Cambridge University Press:  30 October 2009

MANIKANDAN MATHUR*
Affiliation:
Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
THOMAS PEACOCK
Affiliation:
Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
*
Email address for correspondence: [email protected]

Abstract

In addition to being observable in laboratory experiments, internal wave beams are reported in geophysical settings, which are characterized by non-uniform density stratifications. Here, we perform a combined theoretical and experimental study of the propagation of internal wave beams in non-uniform density stratifications. Transmission and reflection coefficients, which can differ greatly for different physical quantities, are determined for sharp density-gradient interfaces and finite-width transition regions, accounting for viscous dissipation. Thereafter, we consider even more complex stratifications to model geophysical scenarios. We show that wave beam ducting can occur under conditions that do not necessitate evanescent layers, obtaining close agreement between theory and quantitative laboratory experiments. The results are also used to explain recent field observations of a vanishing wave beam at the Keana Ridge, Hawaii.

Type
Papers
Copyright
Copyright © Cambridge University Press 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Akylas, T. R., Grimshaw, R. H. J., Clarke, S. R. & Tabaei, A. 2007 Reflecting tidal wave beams and local generation of solitary waves in the ocean thermocline. J. Fluid Mech. 593, 297313.CrossRefGoogle Scholar
Alexander, M. J., Holton, J. R. & Durran, D. R. 1995 The gravity wave response above deep convection in a squall line simulation. J. Atmos. Sci. 52, 22122226.2.0.CO;2>CrossRefGoogle Scholar
Barcilon, A., Blumsack, S. & Lau, J. 1972 Reflection of internal gravity waves by small density variations. J. Phys. Ocean. 2, 104107.2.0.CO;2>CrossRefGoogle Scholar
Brown, G. L. & Sutherland, B. R. 2007 Internal wave tunnelling through non-uniformly stratified shear flow. Atmos. Ocean 45, 4756.CrossRefGoogle Scholar
Cole, S. T., Rudnick, D. L., Hodges, B. A. & MArtin, J. P. 2009 Observations of tidal internal wave beams at Kauai Channel, Hawaii. J. Phys. Ocean. 39, 421436.CrossRefGoogle Scholar
Dalziel, S. B., Hughes, G. O. & Sutherland, B. R. 2000 Whole-field density measurements by ‘synthetic schlieren’. Expts. Fluids 28, 322335.CrossRefGoogle Scholar
Delisi, D. P. & Orlanski, I. 1975 On the role of density jumps in the reflexion and breaking of internal gravity waves. J. Fluid Mech. 69, 445464.CrossRefGoogle Scholar
Drazin, P. G. & Reid, W. H. 1981 Hydrodynamic Stability, pp. 323327. Cambridge University Press.Google Scholar
Eckart, C. 1961 Internal waves in the ocean. Phys. Fluids. 4, 791799.CrossRefGoogle Scholar
Fritts, D. C. & Yuan, L. 1989 An analysis of gravity wave ducting in the atmosphere: Eckart's resonances in thermal and Doppler ducts J. Geophys. Res. 94 (D15), 1845518466.CrossRefGoogle Scholar
Gerkema, T. 2001 Internal and interfacial tides: beam scattering and local generation of solitary waves. J. Mar. Res. 59 (2), 227255.CrossRefGoogle Scholar
Gill, A. E. 1982 Atmosphere–Ocean Dynamics. Academic Press Inc.Google Scholar
Gostiaux, L. & Dauxois, T. 2007 Laboratory experiments on the generation of internal tidal beams over steep slopes. Phys. Fluids 19, 028102.CrossRefGoogle Scholar
Gostiaux, L., Didelle, H., Mercier, S. & Dauxois, T. 2007 A novel internal waves generator. Expts. Fluids 42, 123130.CrossRefGoogle Scholar
Kistovich, Y. V. & Chacheshkin, Y. D. 1998 Linear theory of the propagation of internal wave beams in an arbitrarily stratified liquid. J. Appl. Mech. & Tech. Phys. 39 (5), 729737.CrossRefGoogle Scholar
Koop, C. G. 1981 A preliminary investigation of the interaction of internal gravity waves with a steady shearing motion J. Fluid Mech. 113, 347386.CrossRefGoogle Scholar
Koop, C. G. & Mcgee, B. 1986 Measurements of internal gravity waves in a continuously stratified shear flow J. Fluid Mech. 172, 453480.CrossRefGoogle Scholar
Lien, R.-C. & Gregg, M. C. 2001 Observations of turbulence in a tidal beam and across a coastal ridge. J. Geophys. Res. 106, 45754591.CrossRefGoogle Scholar
Lighthill, J. 1978 Waves in Fluids. Cambridge University Press.Google Scholar
Martin, J. P., Rudnick, D. L. & Pinkel, R. 2006 Spatially broad observations of internal waves in the upper ocean at the Hawaiian ridge. J. Phys. Ocean. 36 (6), 10851103.CrossRefGoogle Scholar
Mowbray, D. E. & Rarity, B. S. H. 1967 A theoretical and experimental investigation of the phase configuration of internal waves of small amplitude in a density stratified liquid. J. Fluid Mech. 28, 116.CrossRefGoogle Scholar
Nault, J. T. & Sutherland, B. R. 2007 Internal wave transmission in non-uniform flows. Phys. Fluids 19, 016601.CrossRefGoogle Scholar
Peacock, T., Echeverri, P. & Balmforth, N. J. B. 2008 Experimental investigation of internal tide generation by two-dimensional topography. J. Phys. Ocean. 38, 235242.CrossRefGoogle Scholar
Peacock, T. & Tabaei, A. 2005 Visualization of nonlinear effects in reflecting internal wave beams. Phys. Fluids 17, 061702.CrossRefGoogle Scholar
Peacock, T. & Weidman, P. 2005 The effect of rotation on conical wave beams in a stratified fluid. Expts. Fluids 39, 3237.CrossRefGoogle Scholar
Sutherland, B. R. & Yewchuk, K. 2004 Internal wave tunnelling. J. Fluid Mech. 511, 125134.CrossRefGoogle Scholar
Tabaei, A. & Akylas, T. R. 2003 Nonlinear internal gravity wave beams. J. Fluid Mech. 482, 141161.CrossRefGoogle Scholar
Thomas, N. H. & Stevenson, T. N. 1972 A similarity solution for internal waves. J. Fluid Mech. 54, 495506.CrossRefGoogle Scholar
Thorpe, S. A. 1999 On the breaking of internal waves in the ocean. J. Phys. Ocean. 29, 24332441.2.0.CO;2>CrossRefGoogle Scholar
Thorpe, S. A. 2007 An Introduction to Ocean Turbulence. Cambridge University Press.CrossRefGoogle Scholar
Walterscheid, R. L., Schubert, G. & Brinkman, D. G. 2001 Small-scale gravity waves in the upper mesosphere and lower thermosphere generated by deep tropical convection J. Geophys. Res. 106 (D23), 3182531832.CrossRefGoogle Scholar
Zhang, H. P., King, B. & Swinney, H. L. 2007 Experimental study of internal gravity waves generated by supercritical topography Phys. Fluids 19, 096602.CrossRefGoogle Scholar