Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-09T22:05:14.626Z Has data issue: false hasContentIssue false

Internal gravity waves generated by a turbulent bottom Ekman layer

Published online by Cambridge University Press:  15 October 2007

JOHN R. TAYLOR
Affiliation:
Mechanical and Aerospace Engineering, University of California, San Diego, La Jolla, CA 92093, USA
SUTANU SARKAR
Affiliation:
Mechanical and Aerospace Engineering, University of California, San Diego, La Jolla, CA 92093, USA

Abstract

Internal gravity waves excited by the turbulent motions in a bottom Ekman layer are examined using large-eddy simulation. The outer flow is steady and uniformly stratified while the density gradient is set to zero at the flat lower wall. After initializing with a linear density profile, a mixed layer forms near the wall separated from the ambient stratification by a pycnocline. Two types of internal wave are observed. Waves with frequencies larger than the free-stream buoyancy frequency are seen in the pycnocline, and vertically propagating internal waves are observed in the outer layer with characteristic frequency and wavenumber spectra. Since a signature of the pycnocline waves is observed in the frequency spectrum of the mixed layer, these waves may affect the boundary-layer turbulence. The dominant outer-layer waves have a group velocity directed 35-60° from the vertical axis, which is consistent with previous laboratory studies. The energy flux associated with the radiated waves is small compared to the integrated dissipation in the boundary layer, but is of the same order as the integrated buoyancy flux. A linear model is proposed to estimate the decay in wave amplitude owing to viscous effects. Starting from the observed wave amplitudes at the bottom of the pycnocline, the model prediction for the spectral distribution of the outer layer wave amplitude compares favourably with the simulation results.

Type
Papers
Copyright
Copyright © Cambridge University Press 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Aguilar, D. A. & Sutherland, B. R. 2006 Internal wave generation from rough topography. Phys. Fluids 18 (066603), 19.CrossRefGoogle Scholar
Armenio, V. & Sarkar, S. 2002 An investigation of stably stratified turbulent channel flow using large-eddy simulation. J. Fluid Mech. 459, 142.CrossRefGoogle Scholar
Basak, S. & Sarkar, S. 2006 Dynamics of a stratified shear layer with horizontal shear. J. Fluid Mech. 568, 1954.Google Scholar
Bonneton, P., Chomaz, J. M. & Hopfinger, E. J. 1993 Internal waves produced by the turbulent wake of a sphere moving horizontally in a stratified fluid. J. Fluid Mech. 254, 2340.CrossRefGoogle Scholar
Buhler, O. & McIntyre, M. E. 1999 On shear-generated gravity waves that reach the mesosphere. Part II: Wave propagation. J. Atmos. Sci. 56, 37643773.Google Scholar
Buhler, O., McIntyre, M. E. & Scinocca, J. F. 1999 On shear-generated gravity waves that reach the mesosphere. Part I: Wave generation. J. Atmos. Sci. 56, 37493763.Google Scholar
Coleman, G. N., Ferziger, J. H. & Spalart, P. R. 1990 A numerical study of the turbulent Ekman layer. J. Fluid Mech. 213, 313348.Google Scholar
D'Asaro, E. 1982 Absorption of internal waves by the benthic boundary layer. J. Phys. Oceanogr. 12, 323336.2.0.CO;2>CrossRefGoogle Scholar
Diamessis, P. J., Domaradzki, J. A. & Hesthaven, J. S. 2005 A spectral multidomain penalty method model for the simulation of high Reynolds number localized incompressible stratified turbulence. J. Comput. Phys. 202 (1), 298322.CrossRefGoogle Scholar
Dohan, K. & Sutherland, B. R. 2003 Internal waves generated from a turbulent mixed region. Phys. Fluids 15 (2), 488498.Google Scholar
Dohan, K. & Sutherland, B. R. 2005 Numerical and laboratory generation of internal waves from turbulence. Dyn. Atmos. Oceans 40, 4356.CrossRefGoogle Scholar
E, X. & Hopfinger, E. J. 1986 On mixing across an interface in stably stratified fluid. J. Fluid Mech. 166, 227244.Google Scholar
Flynn, M. R. & Sutherland, B. R. 2004 Intrusive gravity currents and internal gravity wave generation in stratified fluid. J. Fluid Mech. 514, 355383.CrossRefGoogle Scholar
Fritts, D. C. & Alexander, M. J. 2003 Gravity wave dynamics and effects in the middle atmosphere. Rev. Geophys. 41 (1003), doi:10.1029/2001RG000106.CrossRefGoogle Scholar
Garrett, C. & St Laurent, L. 2002 Aspects of deep ocean mixing. J. Oceanogr. 58, 1124.Google Scholar
Germano, M., Piomelli, U., Moin, P. & Cabot, W. H. 1991 A dynamic subgrid-scale eddy viscosity model. Phys. Fluids A 3 (7), 17601765.CrossRefGoogle Scholar
Gibson, C. H., Bondur, V. G., Keeler, R. N. & Leung, P. T. 2006 Energetics of the beamed zombie turbulence maser action mechanism for remote detection of submerged oceanic turbulence. J. Appl. Fluid Mech. 1 (1), 1142.Google Scholar
Gill, A. E. 1982 Atmosphere–Ocean Dynamics. Academic.Google Scholar
Gourlay, M. J., Arendt, S. C., Fritts, D. C. & Werne, J. 2001 Numerical modeling of initially turbulent wakes with net momentum. Phys. Fluids 13 (12), 37833802.CrossRefGoogle Scholar
Gregg, M. C., Winkel, D. W., MacKinnon, J. A. & Lien, R. C. 1999 Mixing over shelves and slopes. In Dynamics of Oceanic Internal Gravity Waves II, Proceedings, Hawaiian Winter Workshop (ed. P. Muller & D. Henderson), pp. 37–45.Google Scholar
Grotzbach, G. 1987 Direct numerical and large eddy simulation of turbulent channel flows. In Encyclopedia of Fluid Mechanics (ed. Cheremisinoff, N. P.), vol. 6, pp. 13371391. Gulf, West Orange, NJ.Google Scholar
Holton, J. R. & Alexander, M. J. 2000 The role of waves in the transport circulation of the middle atmosphere. In AGU Monograph: Science Across the Stratopause, pp. 21–35. American Geophysical Union.CrossRefGoogle Scholar
Itsweire, E. C., Koseff, J. R., Briggs, D. A. & Ferziger, J.H. 1993 Turbulence in stratified shear flows: implications for interpreting shear-induced mixing in the ocean. J. Phys. Oceanogr. 23, 15081522.2.0.CO;2>CrossRefGoogle Scholar
Keeler, R. N., Bondur, V. G. & Gibson, C. H. 2005 Optical satellite imagery detection of internal wave effects from a submerged turbulent outfall in a stratified ocean. Geophys. Res. Lett. 32 (L12610), 15.Google Scholar
Klemp, J. B. & Durran, D. R. 1983 An upper boundary condition permitting internal gravity wave radiation in numerical mesoscale models. Mon. Weather Rev. 111, 430444.2.0.CO;2>CrossRefGoogle Scholar
Linden, P. F. 1975 The deepening of a mixed layer in a stratified fluid. J. Fluid Mech. 71, 385405.CrossRefGoogle Scholar
Moum, J. N., Herbert, D., Paulson, C. A. & Caldwell, D. R. 1992 Turbulence and internal waves at the equator. Part I: Statistics from towed thermistors and a microstructure profiler. J. Phys. Oceanogr. 22, 13301345.2.0.CO;2>CrossRefGoogle Scholar
Pedlosky, J. 2003 Waves in The Ocean and Atmosphere: Introduction to Wave Dynamics, 1st edn. Springer.CrossRefGoogle Scholar
Perlin, A., Moum, J. N., Klymak, J. M., Levine, M. D., Boyd, T. J. & Kosro, P. M. 2007 Organization of stratification, turbulence, and veering in bottom Ekman layers. J. Geophys. Res. 112, C05S90, 112.Google Scholar
Piat, J.-F. & Hopfinger, E. J. 1981 A boundary layer topped by a density interface. J. Fluid Mech. 113, 411432.CrossRefGoogle Scholar
Pinkel, R. 2005 Near-inertial wave propagation in the western Arctic. J. Phys. Oceanogr. 35 (5), 645665.CrossRefGoogle Scholar
Piomelli, U., Ferziger, J., Moin, P. & Kim, J. 1989 New approximate boundary conditions for large eddy simulations of wall-bounded flows. Phys. Fluids A 1 (6), 10611068.CrossRefGoogle Scholar
Schumann, U. 1975 Subgrid scale model for finite difference simulations of turbulent flows in plane channels and annuli. J. Comput. Phys. 18, 376404.Google Scholar
Slinn, D. N. & Riley, J. J. 1998 Turbulent dynamics of a critically reflecting internal gravity wave. Theor. Comput. Fluid Dyn. 11, 281303.CrossRefGoogle Scholar
Spedding, G. R. 2002 Vertical structure in stratified wakes with high initial Froude number. J. Fluid Mech. 454, 71112.CrossRefGoogle Scholar
Sutherland, B. R. 2001 Finite-amplitude internal wavepacket dispersion and breaking. J. Fluid Mech. 429, 343380.CrossRefGoogle Scholar
Sutherland, B. R. & Linden, P. F. 1998 Internal wave excitation from stratified flow over a thin barrier. J. Fluid Mech. 377, 223252.CrossRefGoogle Scholar
Sutherland, B. R., Caulfield, C. P. & Peltier, W. R. 1994 Internal gravity wave generation and hydrodynamic instability. J. Atmos. Sci. 51, 32613280.2.0.CO;2>CrossRefGoogle Scholar
Taylor, J. R., Sarkar, S. & Armenio, V. 2005 Large eddy simulation of stably stratified open channel flow. J. Fluid Mech. 17, 118.Google Scholar
Thorpe, S. A. 2001 Internal wave reflection and scatter from sloping rough topography. J. Phys. Oceanogr. 31, 537553.Google Scholar