Published online by Cambridge University Press: 05 March 2019
Studies of the effects of constructive or destructive interference on the transmission of internal waves through non-uniform stratifications have typically been performed for internal wave fields that are spatiotemporally harmonic. To understand the impacts of spatiotemporal localization, we present a theoretical and experimental study of the transmission of two-dimensional internal waves that are generated by a boundary forcing that is localized in both space and time. The model analysis reveals that sufficient localization leads to the disappearance of transmission peaks and troughs that would otherwise be present for a harmonic forcing. The corresponding laboratory experiments that we perform provide clear demonstration of this effect. Based on the group velocity and angle of propagation of the internal waves, a practical criterion that assesses when the transmission peaks or troughs are evident is obtained.