Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-08T10:16:27.521Z Has data issue: false hasContentIssue false

Interfacial instability of thin ferrofluid films under a magnetic field

Published online by Cambridge University Press:  14 August 2014

Ivana Seric
Affiliation:
Department of Mathematical Sciences, New Jersey Institute of Technology, Newark, NJ 07103, USA
Shahriar Afkhami*
Affiliation:
Department of Mathematical Sciences, New Jersey Institute of Technology, Newark, NJ 07103, USA
Lou Kondic
Affiliation:
Department of Mathematical Sciences, New Jersey Institute of Technology, Newark, NJ 07103, USA
*
Email address for correspondence: [email protected]

Abstract

We study magnetically induced interfacial instability of a thin ferrofluid film subjected to an applied uniform magnetic field and covered by a non-magnetizable passive gas. Governing equations are derived using the long-wave approximation of the coupled static Maxwell and Stokes equations. The contact angle is imposed via a disjoining/conjoining pressure model. Numerical simulations show the patterning resulting from unstable perturbations and dewetting of the ferrofluid film. We find that the subtle competition between the applied field and the van der Waals induced dewetting determines the appearance of satellite droplets. The results suggest a new route for generating self-assembled ferrofluid droplets from a thin film using an external magnetic field. An axisymmetric droplet on a surface is also studied, and we demonstrate the deformation of the droplet into a spiked cone, in agreement with experimental findings.

Type
Rapids
Copyright
© 2014 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Afkhami, S., Renardy, Y., Renardy, M., Riffle, J. S. & St. Pierre, T. G. 2008 Field-induced motion of ferrofluid droplets through immiscible viscous media. J. Fluid Mech. 610, 363380.CrossRefGoogle Scholar
Afkhami, S., Tyler, A. J., Renardy, Y., Renardy, M., St. Pierre, T. G., Woodward, R. C. & Riffle, J. S. 2010 Deformation of a hydrophobic ferrofluid droplet suspended in a viscous medium under uniform magnetic fields. J. Fluid Mech. 663, 358384.Google Scholar
Chen, C.-Y. & Cheng, Z.-Y. 2008 An experimental study on Rosensweig instability of a ferrofluid droplet. Phys. Fluids 20, 054105-8.Google Scholar
Chen, C.-Y. & Li, C.-S. 2010 Ordered microdroplet formations of thin ferrofluid layer breakups. Phys. Fluids 22, 014105-6.Google Scholar
Craster, R. V. & Matar, O. K. 2005 Electrically induced pattern formation in thin leaky dielectric films. Phys. Fluids 17, 032104-17.Google Scholar
Dickstein, A. J., Erramilli, S., Goldstein, R. E., Jackson, D. P. & Langer, S. A. 1993 Labyrinthine pattern formation in magnetic fluids. Science 261, 10121015.Google Scholar
Diez, J. & Kondic, L. 2007 On the breakup of fluid films of finite and infinite extent. Phys. Fluids 19, 072107-22.Google Scholar
Kondic, L. 2003 Instability in the gravity driven flow of thin liquid films. SIAM Rev. 45, 95115.Google Scholar
Malouin, B. A., Vogel, M. J. & Hirsa, A. H. 2010 Electromagnetic control of coupled droplets. Appl. Phys. Lett. 96, 214104-3.Google Scholar
Malouin, B. A., Vogel, M. J., Olles, J. D., Cheng, L. & Hirsa, A. H. 2011 Electromagnetic liquid pistons for capillarity-based pumping. Lab on a Chip 11, 393397.Google Scholar
Nguyen, N.-T. 2012 Micro-magnetofluidics: interactions between magnetism and fluid flow on the microscale. Microfluid Nanofluid 12, 116.CrossRefGoogle Scholar
Nguyen, N.-T., Zhu, G., Chua, Y.-C., Phan, V.-N. & Tan, S.-H. 2010 Magnetowetting and sliding motion of a sessile ferrofluid droplet in the presence of a permanent magnet. Langmuir 26, 1255312559.Google Scholar
Pease, L. F. III & Russel, W. B. 2002 Linear stability analysis of thin leaky dielectric films subjected to electric fields. J. Non-Newtonian Fluid Mech. 102, 233250.Google Scholar
Roberts, S. A. & Kumar, S. 2009 AC electrohydrodynamic instabilities in thin liquid films. J. Fluid Mech. 631, 255279.Google Scholar
Roberts, S. A. & Kumar, S. 2010 Electrohydrodynamic instabilities in thin liquid trilayer films. Phys. Fluids 22, 122102-15.Google Scholar
Rosensweig, R. E. 1987 Magnetic fluids. Annu. Rev. Fluid Mech. 19, 437463.Google Scholar
Shankar, V. & Sharma, A. 2004 Instability of the interface between thin fluid films subjected to electric fields. J. Colloid Interface Sci. 274, 294308.Google Scholar
Timonen, J. V. I., Latikka, M., Ikkala, O. & Ras, R. H. A. 2013a Free-decay and resonant methods for investigating the fundamental limit of superhydrophobicity. Nat. Commun. 4, 2398.Google Scholar
Timonen, J. V. I., Latikka, M., Leibler, L., Ras, R. H. A. & Ikkala, O. 2013b Switchable static and dynamic self-assembly of magnetic droplets on superhydrophobic surfaces. Science 341, 253357.Google Scholar
Yeo, L. Y., Craster, R. V. & Matar, O. K. 2007 Drop manipulation and surgery using electric fields. J. Colloid Interface Sci. 306, 368378.Google Scholar