Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-09T21:41:24.658Z Has data issue: false hasContentIssue false

Interactions of a stationary finite-sized particle with wall turbulence

Published online by Cambridge University Press:  14 December 2007

LANYING ZENG
Affiliation:
Department of Theoretical and Applied Mechanics, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
S. BALACHANDAR*
Affiliation:
Department of Theoretical and Applied Mechanics, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
PAUL FISCHER
Affiliation:
Mathematics and Computer Science Division, Argonne National Laboratory, Argonne, IL 60439, USA
FADY NAJJAR
Affiliation:
Center for Simulation of Advanced Rockets, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
*
Present address: Department of Mechanical and Aerospace Engineering, University of Florida, Gainesville, FL 32611, USA.

Abstract

Reliable information on forces on a finite-sized particle in a turbulent boundary layer is lacking, so workers continue to use standard drag and lift correlations developed for a laminar flow to predict drag and lift forces. Here we consider direct numerical simulations of a turbulent channel flow over an isolated particle of finite size. The size of the particle and its location within the turbulent channel are systematically varied. All relevant length and time scales of turbulence, attached boundary layers on the particle, and particle wake are faithfully resolved, and thus we consider fully resolved direct numerical simulations. The results from the direct numerical simulation are compared with corresponding predictions based on the standard drag relation with and without the inclusion of added-mass and shear-induced lift forces. The influence of turbulent structures, such as streaks, quasi-streamwise vortices and hairpin packets, on particle force is explored. The effect of vortex shedding is also observed to be important for larger particles, whose Re exceeds a threshold.

Type
Papers
Copyright
Copyright © Cambridge University Press 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Auton, T. R. 1987 The lift force on a spherical body in a rotational flow. J. Fluid Mech. 183, 199218.CrossRefGoogle Scholar
Bagchi, P. & Balachandar, S. 2002 a Effects of free rotation on the motion of a solid sphere in linear shear flow at moderate Re. Phys. Fluids 14, 27192737.CrossRefGoogle Scholar
Bagchi, P. & Balachandar, S. 2002 b Shear versus vortex-induced lift force on a rigid sphere at moderate Re. J. Fluid Mech. 473, 379388.CrossRefGoogle Scholar
Bagchi, P. & Balachandar, S. 2003 Effect of turbulence on the drag and lift of a particle. Phys. Fluids 15, 34963513.CrossRefGoogle Scholar
Bagchi, P. & Balachandar, S. 2004 Response of the wake of an isolated particle to an isotropic turbulent flow. J. Fluid Mech. 518, 95123.CrossRefGoogle Scholar
Bagchi, P., Ha, M. Y. & Balachandar, S. 2001 Direct numerical simulation of flow and heat transfer from a sphere in a uniform cross-flow. Trans. ASME I: J. Fluids Engng 123, 347358.CrossRefGoogle Scholar
Brooke, J. W. & Hanratty, T. J. 1993 Origin of turbulence-producing eddies in a channel flow. Phys. Fluids A5, 10111022.CrossRefGoogle Scholar
Brooke, J. W., Hanratty, T. J. & McLaughlin, J. B. 1994 Free flight mixing and deposition of aerosols. Phys. Fluids 6, 34043415.CrossRefGoogle Scholar
Brucato, A., Grisafi, F., & Montante, G. 1998 Particle drag coefficients in turbulent fluids. Chem. Engng Sci. 53, 32953314.CrossRefGoogle Scholar
Caraman, N., Boree, J. & Simonin, O. 2003 Effect of collisions on the dispersed phase fluctuation in a tube 1flow: experimental and theoretical analysis. Phys. Fluids 1 15, 36023612.CrossRefGoogle Scholar
Chakraborty, P., Balachandar, S. & Adrian, R. J. (2005) On the relationships between local vortex identification schemes. J. Fluid Mech. 535, 189214.CrossRefGoogle Scholar
Christensen, K. T. & Adrian, R. J. 2001 Statistical evidence of hairpin vortex packets in wall turbulence. J. Fluid Mech. 431, 433443.CrossRefGoogle Scholar
Crowe, C. T., Sommerfeld, M., & Tsuji, Y. 1998 Multiphase flows with droplets and particles. CRC Press. New York.Google Scholar
Dandy, D. S. & Dwyer, H. A. 1990 A sphere in shear flow at finite Reynolds number: effect of shear on particle lift, drag and heat transfer. J. Fluid Mech. 216, 381410.CrossRefGoogle Scholar
Deville, M. O., Fischer, P. F. & Mund, E. H. 2002 High-order methods for incompressible fluid flow. Cambridge University Press.CrossRefGoogle Scholar
Fessler, J. R., Kulick, J. D. & Eaton, J. K. 1994 Preferential concentration of heavy particles in a turbulent channel flow. Phys. Fluids 6, 37423749.CrossRefGoogle Scholar
Gore, R. A. & Crowe, C. T. 1990 Discussion of particle drag in a dilute turbulent two-phase suspension flow. Intl J. Multiphase Flow 16, 359361.CrossRefGoogle Scholar
Hall, D. 1988 Measurements of the mean force on a particle near a boundary in turbulent flow. J. Fluid Mech. 187, 451466.CrossRefGoogle Scholar
Illiopoulos, I. & Hanratty, T. J. 1999 Turbulent dispersion in a non-homogeneous field. J. Fluid Mech. 392, 4571.CrossRefGoogle Scholar
Johnson, T. A. & Patel, V. C. 1999 Flow past a sphere up to Reynolds number of 300. J. Fluid Mech. 378, 1970.CrossRefGoogle Scholar
Kaftori, D., Hetsroni, G. & Banerjee, S. 1995 a Particle behavior in the turbulent boundary layer: I. Motion, deposition and entrainment. Phys. Fluids 7, 10951106.CrossRefGoogle Scholar
Kaftori, D., Hetsroni, G. & Banerjee, S. 1995 b Particle behavior in the turbulent boundary layer: II. Velocity and distribution profiles, deposition and entrainment. Phys. Fluids 7, 11071121.CrossRefGoogle Scholar
Kim, J., Moin, P. & Moser, R. D. 1987 Turbulence statistics in fully developed channel flow at low Reynolds number. J. Fluid Mech. 177, 133166.CrossRefGoogle Scholar
Kurose, R. & Komori, S. 1999 Drag and lift forces on a rotating sphere in a linear shear flow. J. Fluid Mech. 384, 183206.CrossRefGoogle Scholar
McLaughlin, J. B. 1991 Inertial migration of a small sphere in linear shear flows. J. Fluid Mech. 224, 261274.CrossRefGoogle Scholar
Margavey, R. H. & Bishop, R. L. 1961 Transition ranges for three dimensional wakes. Can. J. Phys. 39, 14181422.Google Scholar
Mei, R. 1992 An approximate expression for the shear lift force on a spherical particle at finite Reynolds number. Intl J. Multiphase Flow 18, 145147.CrossRefGoogle Scholar
Mei, R. 1994 Effect of turbulence on the particle settling velocity in the nonlinear drag range. Intl J. Multiphase Flow 20, 273284.CrossRefGoogle Scholar
Mei, R. & Adrian, R. 1992 Flow past a sphere with an oscillation in the free-stream velocity and unsteady drag at finite Reynolds number. J. Fluid Mech. 237, 323341.CrossRefGoogle Scholar
Merle, A., Legendre, D. & Magnaudet, J. 2005 Forces on a high–Reynolds–number spherical bubble in a turbulent flow. J. Fluid Mech. 532, 5362.CrossRefGoogle Scholar
Mito, Y. & Hanratty, T. J. 2002 Use of a modified Langevin equation to describe turbulent dispersion of fluid particles in a channel flow. Turbulence Combust. 68, 126.CrossRefGoogle Scholar
Mittal, R. 2000 Response of the sphere wake to free–stream fluctuations. Theoret. Comput. Fluid Dyn. 13, 397419.CrossRefGoogle Scholar
Mollinger, A. M. & Nieuwstadt, F. T. M. 1996 Measurement of the lift force on a particle fixed to the wall in the viscous sublayer of a fully developed turbulent boundary layer. J. Fluid Mech. 316, 285306.CrossRefGoogle Scholar
Moore, D. W. 1963 The boundary layer on a spherical gas bubble. J. Fluid Mech. 16, 161176.CrossRefGoogle Scholar
Moore, D. W. & Saffman, P. G. 1968 The rise of a body through a rotating fluid in a container of finite length. J. Fluid Mech. 31, 635642.CrossRefGoogle Scholar
Natarajan, R. & Acrivos, A. 1993 The instability of the steady flow past spheres and disks. J. Fluid Mech. 254, 323344.CrossRefGoogle Scholar
Pan, Y. & Banerjee, S. 1996 Numerical simulation of particle interactions with wall turbulence. Phys. Fluids 8, 27332755.CrossRefGoogle Scholar
Pan, Y. & Banerjee, S. 1997 Numerical investigations of the effects of large particles in wall turbulence. Phys. Fluids 9, 37863807.CrossRefGoogle Scholar
Ranz, W. E. & Marshall, W. R. 1952 Evaporation from drops. Chem. Engng Prog. 48, 141146.Google Scholar
Rashidi, M., Hetsroni, G. & Banerjee, S. 1990 Particle turbulence interaction in a boundary layer. Intl J. Multiphase Flow 16, 935949.CrossRefGoogle Scholar
Reynolds, A. M. 1997 On the application of Thompson's random flight model to prediction of particle dispersion within a ventilated airspace. J. Wind Engng Indust. Aerodyn. 67–68, 627638.CrossRefGoogle Scholar
Rudolff, R. R. & Bachalo, W. D. 1988 Measurement of droplet drag coefficients in polydispersed turbulent flow field. AIAA Paper 88-0235.CrossRefGoogle Scholar
Saffman, P. G. 1965 The lift on a small sphere in a slow shear flow. J. Fluid Mech. 22, 385400.CrossRefGoogle Scholar
Sakamoto, H. & Haniu, H. 1990 A study of vortex shedding from spheres in a uniform flow. Trans. ASME I: J. Fluids Engng 112, 386392.Google Scholar
Sato, Y. & Hishida, K. 1996 Transport process of turbulence energy in particle–laden turbulent flow. Intl J. Heat Fluid Flow 17, 202210.CrossRefGoogle Scholar
Schiller, L. & Neumann, A. 1933 Uber die grundlegenden berechungen bei der schwer- kraftaufberereitung. Z. Vereines Deutsch. Ingen. 77, 318320.Google Scholar
Sirignano, W. A. 1999 Fluid dynamics and transport of droplets and sprays. Cambridge University Press.CrossRefGoogle Scholar
Suzuki, Y., Ikenoya, M. & Kasagi, N. 2000 Simultaneous measurement of fluid and dispersed phases in a particle–laden turbulent channel flow with the aid of 3-D PTV. Exps. Fluids 29, s185s193.CrossRefGoogle Scholar
Thompson, D.J. 1987 Criteria for the selection of stochastic models of particle trajectories in turbulent flows. J. Fluid Mech. 180, 529556.CrossRefGoogle Scholar
Tomboulides, A. G. & Orszag, S. A. 2000 Numerical investigation on transitional and weak turbulent flow past a sphere. J. Fluid Mech. 416, 4573.CrossRefGoogle Scholar
Torobin, L. B. & Gauvin, W. H. 1959 Fundamental aspects of solid–gas flow. Can. J. Chem. Engng 38, 129.CrossRefGoogle Scholar
Tsuji, Y. & Morikawa, Y. 1982 LDV measurements of an air–solid two-phase flow in a horizontal pipe. J. Fluid Mech. 120, 385409.CrossRefGoogle Scholar
Tsuji, Y., Morikawa, Y. & Shiomi, H. 1984 LDV measurements of an air–solid two-phase flow in a vertical pipe. J. Fluid Mech. 139, 417434.CrossRefGoogle Scholar
Uhlherr, P. H. T. & Sinclair, C. G. 1970 The effect of freestream turbulence on the drag coefficients of spheres. Proc. Chem. 1, 1.Google Scholar
Vasseur, P. & Cox, R. G. 1977 The lateral migration of spherical particles sedimenting in a stagnant bounded fluid. J. Fluid Mech. 80, 561591.CrossRefGoogle Scholar
Wakaba, L. & Balachandar, S. 2005 History force on a sphere in a weak linear shear flow. Intl J Multiphase Flow 31, 9961014.CrossRefGoogle Scholar
Wu, J. S. & Faeth, G. M. 1994 Sphere wakes at moderate Reynolds numbers in a turbulent environment. AIAA J. 32, 535541.CrossRefGoogle Scholar
Young, J. B. & Hanratty, T. J. 1991 Optical studies on the turbulent motionsx of solid particles in a pipe flow. J. Fluid Mech. 231, 665688.CrossRefGoogle Scholar
Zarin, N. A. & Nicholls, J. 1971 Sphere drag in solid rockets – non–continuum and turbulence effects. Combust. Sci. Technol. 3, 273.CrossRefGoogle Scholar
Zeng, L. 2007 Interaction of a finite-size particle with wall turbulene. PhD thesis, University of Illinois, Urbana, IL.Google Scholar
Zeng, L. Balachandar, S. & Fischer, 2005 Wall-induced forces on a rigid sphere at finite Re. J. Fluid Mech. 536, 125.CrossRefGoogle Scholar
Zhou, J., Adrian, R. J., Balachandar, S. & Kendall, T. M. 1999 Mechanisms for generating coherent packets of hairpin vortices in channel flow. J. Fluid Mech. 387, 353396.CrossRefGoogle Scholar