Hostname: page-component-55f67697df-4ks9w Total loading time: 0 Render date: 2025-05-09T18:24:53.345Z Has data issue: false hasContentIssue false

Interactions between the near-wall turbulent structures and heavy particles in compressible turbulent boundary layers

Published online by Cambridge University Press:  09 May 2025

Ming Yu*
Affiliation:
State Key Laboratory of Aerodynamics, Mianyang 621000, PR China
Lihao Zhao
Affiliation:
Key Laboratory of Applied Mechanics, Ministry of Education, Institute of Fluid Mechanics, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, PR China State Key Laboratory of Advanced Space Propulsion, Tsinghua University, Beijing 100084, PR China
Yibin Du
Affiliation:
State Key Laboratory of Aerodynamics, Mianyang 621000, PR China School of Aeronautic Science and Engineering, Beihang University, Beijing 100191, PR China
Xianxu Yuan*
Affiliation:
State Key Laboratory of Aerodynamics, Mianyang 621000, PR China
Chunxiao Xu*
Affiliation:
Key Laboratory of Applied Mechanics, Ministry of Education, Institute of Fluid Mechanics, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, PR China
*
Corresponding authors: Ming Yu, [email protected]; Xianxu Yuan, [email protected]; Chun-Xiao Xu, [email protected]
Corresponding authors: Ming Yu, [email protected]; Xianxu Yuan, [email protected]; Chun-Xiao Xu, [email protected]
Corresponding authors: Ming Yu, [email protected]; Xianxu Yuan, [email protected]; Chun-Xiao Xu, [email protected]

Abstract

In the present study, we investigate the modulation effects of particles on compressible turbulent boundary layers at a Mach number of 6, employing high-fidelity direct numerical simulations based on the Eulerian–Lagrangian point-particle approach. Our findings reveal that the mean and fluctuating velocities in particle-laden flows exhibit similarities to incompressible flows under compressibility transformations and semi-local viscous scaling. With increasing particle mass loading, the reduction in Reynolds shear stress and the increase in particle feedback force constitute competing effects, leading to a non-monotonic variation in skin friction, particularly in turbulence over cold walls. Furthermore, dilatational motions near the wall, manifested as travelling-wave structures, persist under the influence of particles. However, these structures are significantly weakened due to the suppression of solenoidal bursting events and the negative work exerted by the particle feedback force. These findings align with the insight of Yu et al. (J. Fluid. Mech., vol. 984, 2024, A44), who demonstrated that dilatational motions are generated by the vortices associated with intense bursting events, rather than acting as evolving perturbations beneath velocity streaks. The attenuation of travelling-wave structures at higher particle mass loadings also contributes to the reduction in the intensities of wall shear stress and heat flux fluctuations, as well as the probability of extreme events. These results highlight the potential of particle-laden flows to mitigate aerodynamic forces and thermal loads in high-speed vehicles.

Type
JFM Papers
Copyright
© The Author(s), 2025. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Balachandar, S. & Eaton, J.K. 2010 Turbulent dispersed multiphase flow. Annu. Rev. Fluid Mech. 42 (1), 111133.CrossRefGoogle Scholar
Battista, F., Mollicone, J.-P., Gualtieri, P., Messina, R. & Casciola, C.M. 2019 Exact regularised point particle (ERPP) method for particle-laden wall-bounded flows in the two-way coupling regime. J. Fluid Mech. 878, 420444.CrossRefGoogle Scholar
Berk, T. & Coletti, F. 2020 Transport of inertial particles in high-Reynolds-number turbulent boundary layers. J. Fluid Mech. 903, A18.CrossRefGoogle Scholar
Bernardini, M., Della Posta, G., Salvadore, F. & Martelli, E. 2023 Unsteadiness characterisation of shock wave/turbulent boundary-layer interaction at moderate reynolds number. J. Fluid Mech. 954, A43.CrossRefGoogle Scholar
Bernardini, M., Modesti, D., Salvadore, F. & Pirozzoli, S. 2021 STREAmS: a high-fidelity accelerated solver for direct numerical simulation of compressible turbulent flows. Comput. Phys. Commun. 263, 107906.CrossRefGoogle Scholar
Bernardini, M., Pirozzoli, S. & Orlandi, P. 2013 The effect of large-scale turbulent structures on particle dispersion in wall-bounded flows. Int J. Multiphase Flow 51, 5564.CrossRefGoogle Scholar
Bragg, A.D. & Collins, L.R. 2014 New insights from comparing statistical theories for inertial particles in turbulence: I. Spatial distribution of particles. New J. Phys. 16 (5), 055013.CrossRefGoogle Scholar
Brandt, L. & Coletti, F. 2022 Particle-laden turbulence: progress and perspectives. Annu. Rev. Fluid Mech. 54 (1), 159189.CrossRefGoogle Scholar
Capecelatro, J., Desjardins, O. & Fox, R. 2018 On the transition between turbulence regimes in particle-laden channel flows. J. Fluid Mech. 845, 499519.CrossRefGoogle Scholar
Ceci, A., Palumbo, A., Larsson, J. & Pirozzoli, S. 2022 Numerical tripping of high-speed turbulent boundary layers. Theor. Comp. Fluid Dyn. 36 (6), 865886.CrossRefGoogle Scholar
Chen, G., Wang, H., Luo, K. & Fan, J. 2022 Two-way coupled turbulent particle-laden boundary layer combustion over a flat plate. J. Fluid Mech. 948, A12.CrossRefGoogle Scholar
Cheng, X.L., Zeng, Q.C. & Hu, F. 2012 Stochastic modeling the effect of wind gust on dust entrainment during sand storm. Chin. Sci. Bull 57 (27), 35953602.CrossRefGoogle Scholar
Ching, E., Barnhardt, M. & Ihme, M. 2021 Sensitivity of hypersonic dusty flows to physical modeling of the particle phase. J. Spacecr. Rockets 58 (3), 653667.CrossRefGoogle Scholar
Cogo, M., Salvadore, F., Picano, F. & Bernardini, M. 2022 Direct numerical simulation of supersonic and hypersonic turbulent boundary layers at moderate-high reynolds numbers and isothermal wall condition. J. Fluid Mech. 945, A30.CrossRefGoogle Scholar
Crowe, C.T., Schwarzkopf, J.D., Sommerfeld, M. & Tsuji, Y. 2011 Multiphase Flows with Droplets and Particles. CRC press.CrossRefGoogle Scholar
Crowe, C.T., Troutt, T.R. & Chung, J.N. 1996 Numerical models for two-phase turbulent flows. Annu. Rev. Fluid Mech. 28 (1), 1143.CrossRefGoogle Scholar
Dai, Q., Jin, T., Luo, K. & Fan, J.R. 2018 Direct numerical simulation of particle dispersion in a three-dimensional spatially developing compressible mixing layer. Phys. Fluids 30 (11), 113301.CrossRefGoogle Scholar
Dai, Q., Jin, T., Luo, K., Xiao, W. & Fan, J.R. 2019 Direct numerical simulation of a three-dimensional spatially evolving compressible mixing layer laden with particles. II. Turbulence anisotropy and growth rate. Phys. Fluids 31 (8), 083303.CrossRefGoogle Scholar
Dai, Q., Luo, K., Fan, J.R., Guo, Z.Q. & Chen, Z.H. 2021 Fluctuations of thermodynamic variables in compressible isotropic turbulence laden with inertial particles. Phys. Fluids 33 (9), 093312.CrossRefGoogle Scholar
Dai, Q., Luo, K., Jin, T. & Fan, J.R. 2017 Direct numerical simulation of turbulence modulation by particles in compressible isotropic turbulence. J. Fluid Mech. 832, 438482.CrossRefGoogle Scholar
Ding, H., Zhang, Y., Sun, C., Yang, Y. & Wen, C. 2022 Numerical simulation of supersonic condensation flows using Eulerian-lagrangian and Eulerian wall film models. Energy 258, 124833.CrossRefGoogle Scholar
Dritselis, C. & Vlachos, N. 2008 Numerical study of educed coherent structures in the near-wall region of a particle-laden channel flow. Phys. Fluids 20 (5), 055103.CrossRefGoogle Scholar
Dritselis, C. & Vlachos, N. 2011 Numerical investigation of momentum exchange between particles and coherent structures in low Re turbulent channel flow. Phys. Fluids 23 (2), 025103.CrossRefGoogle Scholar
Duan, L., Beekman, I. & Martin, M. 2010 Direct numerical simulation of hypersonic turbulent boundary layers. Part 2. Effect of wall temperature. J. Fluid Mech. 655, 419445.CrossRefGoogle Scholar
Duan, L., Beekman, I. & Martin, M. 2011 Direct numerical simulation of hypersonic turbulent boundary layers. Part 3. Effect of Mach number. J. Fluid Mech. 672, 245267.CrossRefGoogle Scholar
Ducros, F., Ferrand, V., Nicoud, F., Weber, C., Darracq, D., Gacherieu, C. & Poinsot, T. 1999 Large-eddy simulation of the shock/turbulence interaction. J. Comput. Phys. 152 (2), 517549.CrossRefGoogle Scholar
Eaton, J.K. & Fessler, J.R. 1994 Preferential concentration of particles by turbulence. Intl J. Multiphase Flow 20, 169209.CrossRefGoogle Scholar
Fong, K.O., Amili, O. & Coletti, F. 2019 Velocity and spatial distribution of inertial particles in a turbulent channel flow. J. Fluid Mech. 872, 367406.CrossRefGoogle Scholar
Gao, W., Samtaney, R. & Richter, D.H. 2023 Direct numerical simulation of particle-laden flow in an open channel at $Re_\tau =5186$ . J. Fluid Mech. 957, A3.CrossRefGoogle Scholar
Griffin, K.P., Fu, L. & Moin, P. 2021 Velocity transformation for compressible wall-bounded turbulent flows with and without heat transfer. Proc. Natl Acad. Sci. USA 118 (34), e2111144118.CrossRefGoogle ScholarPubMed
Gualtieri, P., Battista, F., Salvadore, F. & Casciola, C. 2023 Effect of Stokes number and particle-to-fluid density ratio on turbulence modification in channel flows. J. Fluid Mech. 974, A26.CrossRefGoogle Scholar
Gualtieri, P., Picano, F., Sardina, G. & Casciola, C.M. 2015 Exact regularized point particle method for multiphase flows in the two-way coupling regime. J. Fluid Mech. 773, 520561.CrossRefGoogle Scholar
Hadjadj, A., Ben-Nasr, O., Shadloo, M. & Chaudhuri, A. 2015 Effect of wall temperature in supersonic turbulent boundary layers: a numerical study. Intl J. Heat Mass Transfer 81, 426438.CrossRefGoogle Scholar
Hirasaki, G. & Hellums, J. 1970 Boundary conditions on the vector and scalar potentials in viscous three-dimensional hydrodynamics. Q. Appl. Maths 28 (2), 293296.CrossRefGoogle Scholar
Huang, J., Duan, L. & Choudhari, M. 2022 Direct numerical simulation of hypersonic turbulent boundary layers: effect of spatial evolution and reynolds number. J. Fluid Mech. 937, A3.CrossRefGoogle Scholar
Jie, Y.C., Cui, Z.W., Xu, C.X. & Zhao, L.H. 2022 On the existence and formation of multi-scale particle streaks in turbulent channel flows. J. Fluid Mech. 935, A18.CrossRefGoogle Scholar
Jiménez, J. 2018 Coherent structures in wall-bounded turbulence. J. Fluid Mech. 842, P1.CrossRefGoogle Scholar
Kennedy, C.A. & Gruber, A. 2008 Reduced aliasing formulations of the convective terms within the Navier–Stokes equations for a compressible fluid. J. Comput. Phys. 227 (3), 16761700.CrossRefGoogle Scholar
Klein, M., Sadiki, A. & Janicka, J. 2003 A digital filter based generation of inflow data for spatially developing direct numerical or large eddy simulations. J. Comput. Phys. 186 (2), 652665.CrossRefGoogle Scholar
Kuerten, M. 2016 Point-particle DNS and LES of particle-laden turbulent flow-a state-of-the-art review. Flow Turbul. Combust. 97 (3), 689713.CrossRefGoogle Scholar
Lagha, M., Kim, J., Eldredge, J. & Zhong, X. 2011 A numerical study of compressible turbulent boundary layers. Phys. Fluids 23 (1), 015106.CrossRefGoogle Scholar
Lee, J. & Lee, C. 2015 Modification of particle-laden near-wall turbulence: effect of stokes number. Phys. Fluids 27 (2), 023303.CrossRefGoogle Scholar
Li, Z.Z., Wei, J.J. & Yu, B. 2016 Direct numerical study on effect of interparticle collision in particle-laden turbulence. AIAA J. 54 (10), 32123222.CrossRefGoogle Scholar
Loth, E., Tyler Daspit, J., Jeong, M., Nagata, T. & Nonomura, T. 2021 Supersonic and hypersonic drag coefficients for a sphere. AIAA J. 59 (8), 32613274.CrossRefGoogle Scholar
Marchioli, C. & Soldati, A. 2002 Mechanisms for particle transfer and segregation in a turbulent boundary layer. J. Fluid Mech. 468, 283315.CrossRefGoogle Scholar
Marchioli, C., Soldati, A., Kuerten, J., Arcen, B., Taniere, A., Goldensoph, G., Squires, K., Cargnelutti, M. & Portela, L. 2008 Statistics of particle dispersion in direct numerical simulations of wall-bounded turbulence: results of an international collaborative benchmark test. Intl J. Multiphase Flow 34 (9), 879893.CrossRefGoogle Scholar
Merker, G., Schwarz, C., Stiesch, G. & Otto, F. 2005 Simulating Combustion: Simulation of Combustion and Pollutant Formation for Engine-Development. Springer Science & Business Media.Google Scholar
Mortimer, L. & Fairweather, M. 2020 Density ratio effects on the topology of coherent turbulent structures in two-way coupled particle-laden channel flows. Phys. Fluids 32 (10), 103302.CrossRefGoogle Scholar
Motoori, Y., Wong, C. & Goto, S. 2022 Role of the hierarchy of coherent structures in the transport of heavy small particles in turbulent channel flow. J. Fluid Mech. 942, A3.CrossRefGoogle Scholar
Muramulla, P., Tyagi, A., Goswami, P. & Kumaran, V. 2020 Disruption of turbulence due to particle loading in a dilute gas–particle suspension. J. Fluid Mech. 889, A28.CrossRefGoogle Scholar
Picciotto, M., Marchioli, C. & Soldati, A. 2005 Characterization of near-wall accumulation regions for inertial particles in turbulent boundary layers. Phys. Fluids 17 (9), 098101.CrossRefGoogle Scholar
Pirozzoli, S. 2010 Generalized conservative approximations of split convective derivative operators. J. Comput. Phys. 229 (19), 71807190.CrossRefGoogle Scholar
Pirozzoli, S. 2011 Numerical methods for high-speed flows. Annu. Rev. Fluid Mech. 43 (1), 163194.CrossRefGoogle Scholar
Pirozzoli, S. & Bernardini, M. 2011 Turbulence in supersonic boundary layers at moderate reynolds number. J. Fluid Mech. 688, 120168.CrossRefGoogle Scholar
Pirozzoli, S., Bernardini, M. & Grasso, F. 2010 On the dynamical relevance of coherent vortical structures in turbulent boundary layers. J. Fluid Mech. 648, 325349.CrossRefGoogle Scholar
Pirozzoli, S. & Colonius, T. 2013 Generalized characteristic relaxation boundary conditions for unsteady compressible flow simulations. J. Comput. Phys. 248, 109126.CrossRefGoogle Scholar
Richter, D. 2015 Turbulence modification by inertial particles and its influence on the spectral energy budget in planar couette flow. Phys. Fluids 27 (6), 063304.CrossRefGoogle Scholar
Richter, D. & Sullivan, P. 2014 Modification of near-wall coherent structures by inertial particles. Phys. Fluids 26 (10), 103304.CrossRefGoogle Scholar
Rouson, D. & Eaton, J.K. 2001 On the preferential concentration of solid particles in turbulent channel flow. J. Fluid Mech. 428, 149169.CrossRefGoogle Scholar
Ruan, Y. & Xiao, Z. 2024 On the shear-induced lift in two-way coupled turbulent channel flow laden with heavy particles. J. Fluid Mech. 984, A24.CrossRefGoogle Scholar
Sardina, G., Schlatter, P., Brandt, L., Picano, F. & Casciola, C.M. 2012 Wall accumulation and spatial localization in particle-laden wall flows. J. Fluid Mech. 699, 5078.CrossRefGoogle Scholar
Shu, C.W. & Osher, S. 1988 Efficient implementation of essentially non-oscillatory shock-capturing schemes. J. Comput. Phys. 77 (2), 439471.CrossRefGoogle Scholar
Soldati, A. & Marchioli, C. 2009 Physics and modelling of turbulent particle deposition and entrainment: review of a systematic study. Intl J. Multiphase Flow 35 (9), 827839.CrossRefGoogle Scholar
Spalart, P.R., Moser, R.D. & Rogers, M.M. 1991 Spectral methods for the Navier–Stokes equations with one infinite and two periodic directions. J. Comput. Phys. 96 (2), 297324.CrossRefGoogle Scholar
Toki, T., Sousa, V., Chen, Y., Camillo, G.P., Wagner, A. & Scalo, C. 2025 Large-eddy simulations of conical hypersonic turbulent boundary layers over cooled walls via volumetric rescaling method. J. Fluid Mech. 1003, A28.CrossRefGoogle Scholar
Van Driest, E. 1951 Turbulent boundary layer in compressible fluids. J. Aeronaut. Sci. 18 (3), 145160.CrossRefGoogle Scholar
Vreman, A. 2007 Turbulence characteristics of particle-laden pipe flow. J. Fluid Mech. 584, 235279.CrossRefGoogle Scholar
Wang, G. & Richter, D. 2019 a Modulation of the turbulence regeneration cycle by inertial particles in planar Couette flow. J. Fluid Mech. 861, 901929.CrossRefGoogle Scholar
Wang, G. & Richter, D.H. 2019 b Two mechanisms of modulation of very-large-scale motions by inertial particles in open channel flow. J. Fluid Mech. 868, 538559.CrossRefGoogle Scholar
Wang, J., Wang, N., Zou, X., Dong, W., Zhou, Y., Xie, D. & Shi, B. 2023 Numerical study on combustion efficiency of aluminum particles in solid rocket motor. Chinese J. Aeronaut. 36 (5), 6677.CrossRefGoogle Scholar
Wang, P., Zhou, B. & Zheng, X. 2024 Turbophoresis and preferential accumulation of inertial particles in compressible turbulent channel flow: effect of Mach number. Phys. Rev. Fluids 9 (3), 034305.CrossRefGoogle Scholar
Wenzel, C., Gibis, T. & Kloker, M. 2022 About the influences of compressibility, heat transfer and pressure gradients in compressible turbulent boundary layers. J. Fluid Mech. 930, A1.CrossRefGoogle Scholar
Xiao, W., Jin, T., Luo, K., Dai, Q. & Fan, J.R. 2020 Eulerian–Lagrangian direct numerical simulation of preferential accumulation of inertial particles in a compressible turbulent boundary layer. J. Fluid Mech. 903, A19.CrossRefGoogle Scholar
Xu, D., Wang, J., Wan, M., Yu, C., Li, X. & Chen, S. 2021 Effect of wall temperature on the kinetic energy transfer in a hypersonic turbulent boundary layer. J. Fluid Mech. 929, A33.CrossRefGoogle Scholar
Yao, J. & Hussain, F. 2020 Turbulence statistics and coherent structures in compressible channel flow. Phys. Rev. Fluids 5 (8), 084603.CrossRefGoogle Scholar
Yu, M., Du, Y., Wang, Q., Dong, S. & Yuan, X. 2024 a Momentum and kinetic energy transport in supersonic particle-laden turbulent boundary layers. Phys. Rev. Fluids 9 (10), 104303.CrossRefGoogle Scholar
Yu, M., Zhao, L., Yuan, X. & Xu, C. 2024 b Transport of inertial spherical particles in compressible turbulent boundary layers. J. Fluid Mech.. 990, A5.CrossRefGoogle Scholar
Yu, M., Liu, P., Fu, Y., Tang, Z. & Yuan, X. 2022 a Wall shear stress, pressure and heat flux fluctuations in compressible wall-bounded turbulence. II. Spectra, correlation and nonlinear interactions. Phys. Fluids 34 (6), 065140.CrossRefGoogle Scholar
Yu, M., Liu, P., Fu, Y., Tang, Z. & Yuan, X. 2022 b Wall shear stress, pressure, and heat flux fluctuations in compressible wall-bounded turbulence, part I: one-point statistics. Phys. Fluids 34 (6), 065139.CrossRefGoogle Scholar
Yu, M. & Xu, C. 2021 Compressibility effects on hypersonic turbulent channel flow with cold walls. Phys. Fluids 33 (7), 075106.CrossRefGoogle Scholar
Yu, M., Xu, C. & Pirozzoli, S. 2019 Genuine compressibility effects in wall-bounded turbulence. Phys. Rev. Fluids 4 (12), 123402.CrossRefGoogle Scholar
Yu, M., Xu, C. & Pirozzoli, S. 2020 Compressibility effects on pressure fluctuation in compressible turbulent channel flows. Phys. Rev. Fluids 5 (11), 113401.CrossRefGoogle Scholar
Yu, M., Zhou, Z., Dong, S., Yuan, X. & Xu, C. 2024 c On the generation of near-wall dilatational motions in hypersonic turbulent boundary layers. J. Fluid Mech. 984, A44.CrossRefGoogle Scholar
Yuan, C., Li, J., Jiang, Z. & Yu, H. 2019 Experimental investigation of liquid film cooling in hypersonic flow. Phys. Fluids 31 (4), 046101.CrossRefGoogle Scholar
Zhang, J., Li, T., Ström, H. & Løvås, T. 2020 Grid-independent Eulerian-Lagrangian approaches for simulations of solid fuel particle combustion. Chem. Engng Sci. 387, 123964.CrossRefGoogle Scholar
Zhang, P., Wan, Z., Dong, S., Liu, N., Sun, D. & Lu, X. 2023 Conditional analysis on extreme wall shear stress and heat flux events in compressible turbulent boundary layers. J. Fluid Mech. 974, A38.CrossRefGoogle Scholar
Zhang, P., Wan, Z., Liu, N., Sun, D. & Lu, X. 2022 Wall-cooling effects on pressure fluctuations in compressible turbulent boundary layers from subsonic to hypersonic regimes. J. Fluid Mech. 946, A14.CrossRefGoogle Scholar
Zhang, Y., Bi, W., Hussain, F. & She, Z. 2014 A generalized Reynolds analogy for compressible wall-bounded turbulent flows. J. Fluid Mech. 739, 392420.CrossRefGoogle Scholar
Zhao, L., Andersson, H. & Gillissen, J. 2010 Turbulence modulation and drag reduction by spherical particles. Phys. Fluids 22 (8), 081702.CrossRefGoogle Scholar
Zhao, L., Andersson, H. & Gillissen, J. 2013 Interphasial energy transfer and particle dissipation in particle-laden wall turbulence. J. Fluid Mech. 715, 3259.CrossRefGoogle Scholar
Zhou, T., Zhao, L.H., Huang, W.X. & Xu, C.X. 2020 Non-monotonic effect of mass loading on turbulence modulations in particle-laden channel flow. Phys. Fluids 32 (4), 043304.CrossRefGoogle Scholar