Published online by Cambridge University Press: 26 April 2006
This paper is concerned with the effect of a weak spanwise-variable mean-flow distortion on the growth of oblique instability waves in a Blasius boundary layer. The streamwise component of the distortion velocity initially grows linearly with increasing streamwise distance, reaches a maximum, and eventually decays through the action of viscosity. This decay occurs slowly and allows the distortion to destabilize the Blasius flow over a relatively large streamwise region. It is shown that even relatively weak distortions can cause certain oblique Rayleigh instability waves to grow much faster than the usual two-dimensional Tollmien–Schlichting waves that would be the dominant instability modes in the absence of the distortion. The oblique instability waves can then become large enough to interact nonlinearly within a common critical layer. It is shown that the common amplitude of the interacting oblique waves is governed by the amplitude evolution equation derived in Goldstein & Choi (1989). The implications of these results for Klebanoff-type transition are discussed.