Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-09T21:46:22.476Z Has data issue: false hasContentIssue false

Interaction between two quasi-geostrophic vortices of unequal potential vorticity

Published online by Cambridge University Press:  01 February 2008

ERSIN ÖZUĞURLU
Affiliation:
Mathematical Institute, University of St Andrews, St Andrews, KY16 9SS, UK Faculty of Arts and Science, Bahcesehir University, Besiktas 34100, Istanbul, Turkey
JEAN N. REINAUD*
Affiliation:
Mathematical Institute, University of St Andrews, St Andrews, KY16 9SS, UK
DAVID G. DRITSCHEL
Affiliation:
Mathematical Institute, University of St Andrews, St Andrews, KY16 9SS, UK
*
Author to whom correspondence should be addressed.

Abstract

In this paper we systematically investigate strong interactions between two like-signed quasi-geostrophic vortices containing different uniform potential vorticity. The interaction depends on six parameters: the potential vorticity ratio between the two vortices, their volume ratio, their individual height-to-width aspect ratio, their vertical offset, and their horizontal separation distance. We first determine the conditions under which a strong interaction may occur. To that end, we calculate equilibrium states using an asymptotic approach which models the vortices as ellipsoids and we additionally assess their linear stability. It is found that vortices having similar potential vorticity interact strongly (e.g. merge) at closer separation distances than do vortices with a dissimilar potential vorticity. This implies that interactions between vortices having significantly different potential vorticity may be more destructive, for a given separation distance. This is confirmed by investigating the nonlinear evolution of the vortices over a subset of the full parameter space, solving the full dynamical quasi-geostrophic equations. Many forms of interaction occur, but merger or partial merger (where the largest vortex grows in volume) is mostly observed for interactions between vortices of similar potential vorticity.

Type
Papers
Copyright
Copyright © Cambridge University Press 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Bambrey, R. R., Reinaud, J. N. & Dritschel, D. G. 2007 Strong interactions between two co-rotating quasi-geostrophic vortices. J. Fluid Mech. 592, 117133.CrossRefGoogle Scholar
Dritschel, D. G. 1995 A general theory for two-dimensional vortex interactions. J. Fluid Mech. 293, 269303.CrossRefGoogle Scholar
Dritschel, D. G. 2002 Vortex merger in rotating stratified flows. J. Fluid Mech. 455, 83101.CrossRefGoogle Scholar
Dritschel, D. G. & Ambaum, M. H. P. 1997 A contour-advective semi-Lagrangian algorithm for the simulation of fine-scale conservative fields. Q. J. R. Met. Soc. 123, 10971130.Google Scholar
Dritschel, D. G. & dela Torre Juárez, M. la Torre Juárez, M. 1996 The instability and breakdown of tall columnar vortices in a quasi-geostrophic fluid. J. Fluid Mech. 328, 129160.CrossRefGoogle Scholar
Dritschel, D. G. & Viúdez, I. A. 2003 A balanced approach to modelling rotating stably stratified geophysical flows. J. Fluid Mech. 488, 123150.CrossRefGoogle Scholar
Dritschel, D. G. & Waugh, D. W. 1992 Quantification of the inelastic interaction of unequal vortices in two-dimensional vortex dynamics. Phys. Fluids A 4 (8), 17371744.CrossRefGoogle Scholar
Dritschel, D. G., Reinaud, J. N. & McKiver, W. J. 2004 The quasi-geostrophic ellipsoidal model. J. Fluid Mech. 505, 201223.CrossRefGoogle Scholar
Ebbesmeyer, C. C., Taft, B. A., McWilliams, J. C., Shen, C. Y., Riser, S. C., Rossby, H. T., Biscaye, P. E. & Östlund, H. G. 1986 Detection, structure and origin of extreme anomalies in a western Atlantic oceanographic section. J. Phys. Oceanoger. 16, 591612.2.0.CO;2>CrossRefGoogle Scholar
Garrett, C. 2000 The dynamic ocean. In Perspectives in Fluid Mechanics (ed. Batchelor, G. K., Moffatt, H. K. & Worster, M. G.), pp. 507553 Cambridge University Press.Google Scholar
Gill, A. E. 1982 Atmosphere–Ocean Dynamics. Academic.Google Scholar
von Hardenberg, J., McWilliams, J. C., Provenzale, A., Shchpetkin, A. & Weiss, J. B. 2000 Vortex merging in quasi-geostrophic flows. J. Fluid Mech. 412, 331353.CrossRefGoogle Scholar
Legras, B., Dritschel, D. & Caillol, P. 2001 The erosion of a distributed two-dimensional vortex in a background straining flow. J. Fluid Mech. 441, 369398.CrossRefGoogle Scholar
McKiver, W. J. & Dritschel, D. G. 2003 The motion of a fluid ellipsoid in a general linear background flow. J. Fluid Mech. 474, 147173.CrossRefGoogle Scholar
McKiver, W. J. & Dritschel, D. G. 2006 The stability of a quasi-geostrophic ellipsoidal vortex in a background shear flow. J. Fluid Mech. 560, 117.CrossRefGoogle Scholar
Meacham, S. P. 1992 Quasigeostrophic, ellipsoidal vortices in stratified fluid. Dyn. Atmos. Oceans 16, 189223.CrossRefGoogle Scholar
Meacham, S. P., Pankratov, K. K., Shchepetkin, A. F. & Zhmur, V. V. 1994 The interaction of ellipsoidal vortices with background shear flows in a stratified fluid. Dyn. Atmos. Oceans 21, 167212.CrossRefGoogle Scholar
Meacham, S. P., Morisson, P. J. & Flierl, G. R. 1997 Hamiltonian moment reduction for describing vortices in shear. Phys. Fluids 9, 23102328.CrossRefGoogle Scholar
Miyazaki, T., Furuichi, Y. & Takahashi, N. 2001 Quasigeostrophic spheroidal vortices vortex model. J. Phys. Soc Japan 70, 19421953.CrossRefGoogle Scholar
Miyazaki, T., Yamamoto, M. & Fujishima, S. 2003 Counter-rotating quasigeostrophic ellipsoidal vortex pair. J. Phys. Soc Japan 72, 19421953.CrossRefGoogle Scholar
Reinaud, J. N. & Dritschel, D. G. 2002 The merger of vertically offset quasi-geostrophic vortices. J. Fluid Mech. 469, 287315.CrossRefGoogle Scholar
Reinaud, J. N. & Dritschel, D. G. 2005 The critical merger distance between two co-rotating quasi-geostrophic vortices. J. Fluid Mech. 522, 357381.CrossRefGoogle Scholar
Reinaud, J. N., Dritschel, D. G. & Koudella, C. R. 2003 The shape of the vortices in quasi-geostrophic turbulence. J. Fluid Mech. 474, 175192.CrossRefGoogle Scholar
Scott, R. & Dritschel, D. 2006 Vortex-vortex interactions in the winter stratosphere. J. Atmos. Sci. 63, 726740.CrossRefGoogle Scholar
Supplementary material: PDF

Ozugurlu supplementary material

Appendix.pdf

Download Ozugurlu supplementary material(PDF)
PDF 239.8 KB