Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-09T21:47:11.405Z Has data issue: false hasContentIssue false

Interacting flow theory and trailing edge separation – no stall

Published online by Cambridge University Press:  20 April 2006

F. T. Smith
Affiliation:
United Technologies Research Center, East Hartford, Connecticut, U.S.A. Permanent address: Mathematics Department, Imperial College, London, SW7 2BZ, U.K.

Abstract

The central question addressed here concerns the occurrence of laminar separation near a non-symmetric trailing edge, on one surface only of an airfoil, and whether or not such an event heralds a ‘catastrophic stall’ in the sense that the flow structure changes significantly from the triple-deck or interactive-boundary-layer form holding for attached flow. Virtually all previous works have conjectured, assumed or argued that there is such a catastrophic stall. The present work, however, points (strongly, we believe) to the opposite view, based on a combination of analytical and numerical grounds. First, the argument for a catastrophic stall, although tempting, is shown to contain a fundamental flaw. Secondly, the present numerical work deliberately aims at including the most important separated-flow features, the acknowledgement of the discontinuities at the trailing-edge station and the effects of reversed flow, in a systematic fashion. This appears to be the first such attempt. As a result the trailing-edge requirements are found to be swept upstream, forcing any flow reversal on just one surface to be followed by a reattachment, however abruptly, just before the trailing-edge point. Thirdly, an analysis of the nearly separated and the just-separated regimes confirms the natural emergence of the reattachment phenomenon and ties in closely with the observed numerical features. In particular, the distance of the reattachment point from the trailing edge is found to be of the tiny order $\overline{\triangle^4} $ or less, where $\overline{\triangle}$ is the small upstream separation distance. Finally, there is shown to be a logical tie-in also with trailing-edge flows involving two-sided separation where no catastrophic stall arises. It is concluded that there is no catastrophic stall and that inter alia the triple-deck/interactive-boundary-layer approach can continue to be used with one-sided separation present.

The study implies some fairly striking features associated with one-sided separating flows, but these do bear a firm resemblance to recent laminar and even turbulent flow computations and experiments. This indicates that, contrary to previous proposals, such computations and experiments are explicable within the realms of interactive-boundary-layer theory.

Type
Research Article
Copyright
© 1983 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Batchelor, G. K. 1967 An Introduction to Fluid Dynamics. Cambridge University Press.
Brown, S. N. & Cheng, H. K. 1981 J. Fluid Mech. 108, 171.
Brown, S. N. & Stewartson, K. 1970 J. Fluid Mech. 42, 561.
Burggraf, O. R. 1983 In preparation.
Carter, J. E. 1974 AIAA paper 74–583.
Carter, J. E. 1979 AIAA paper 79–1450.
Carter, J. E. & Wornom, S. F. 1975 NASA SP-347, 125.
Cheng, H. K. & Smith, F. T. 1982 Z. angew. Math. Phys. 33, 151.
Chow, R. & Melnik, R. E. 1976 Grumman Res. Dept. Rep. RE-526J. [Also in Proc. 5th Intl Conf. Num. Methods in Fluid Dyn. (ed. A. I. van de Voore & P. J. Zauberger). Lecture Notes in Physics, vol. 59, p. 135.]
Cole, J. D. & Aroesty, J. 1968 Int. J. Heat Mass Transfer 11, 1167.
Curle, N. 1982 Proc. R. Soc. Lond. A379, 217.
Daniels, P. G. 1974 J. Fluid Mech. 63, 641.
Elliott, J. W. & Smith, F. T. 1983 In preparation.
Hakkinen, R. J. & Rott, N. 1965 AIAA J. 3.
Hegna, H. A. 1981 AIAA paper 81-0047, presented at AIAA 19th Aerospace Sci. Mtg, 12–15 Jan. 1981, St Louis, Missouri, U.S.A. [Also: The numerical solution of incompressible turbulent flow over airfoils. Ph.D. Thesis.]
Jobe, C. E. & Burggraf, O. R. 1974 Proc. R. Soc. Lond. A340, 91.
Korolev, G. L. 1980a Sci. J. TSAGI 11(2), 27.
Korolev, G. L. 1980b Sci. J. TSAGI 11(4), 8.
Le Balleur, J-C. 1981 Rech. Aérospatiale 3, 21.
Mehta, U. B. 1977 In Unsteady Aerodynamics, AGARD Conf. Proc. CP-227, paper 23.
Mehta, U. B. & Lavan, Z. 1975 J. Fluid Mech. 67, 227.
Melnik, R. E. & Chow, R. 1975 Grumman Res. Dep. Rep. RE-510. [Also in Proc. NASA Conf. Aerodyn. Analysis Requiring Advanced Computations, 1975.]
Messiter, A. F. 1970 SIAM J. Appl. Maths 18, 241.
Messiter, A. F. 1975 AGARD Conf. Proc., paper 168 on flow separation.
Messiter, A. F. 1979 In Proc. 8th U.S. Natl Appl. Maths Congr., Los Angeles, 1978.
Neiland, V. Ya. 1971 Izv. Akad. Nauk SSSR, Mekh. Zhid i Gaza No. 3.
Reyhner, T. A. & FLÜGGE-LOTZ, I. 1968 Int. J. Nonlinear Mech. 3, 173.
Ruban, A. I. & Sychev, V. V. 1979 Adv. Mech. 2, 57.
Smith, F. T. 1976 Q. J. Mech. Appl. Maths 29, 343; 29, 365.
Smith, F. T. 1977 Proc. R. Soc. Lond. A356, 433.
Smith, F. T. 1982a Review, IMA J. Appl. Maths 28, 207.
Smith, F. T. 1982b Aero. Q. Nov. 1982, 331.
Smith, F. T. 1983a Submitted to Q. J. Mech. Appl. Maths.
Smith, F. T. 1983b Submitted to Proc. R. Soc. Lond. A.
Smith, F. T., Brighton, P. W. M., Jackson, P. S. & Hunt, J. C. R. 1981 J. Fluid Mech. 113, 123.
Smith, F. T. & Daniels, P. G. 1981 J. Fluid Mech. 110, 1.
Smith, F. T. & Merkin, J. H. 1982 Comp. & Fluids 10, 7.
Solignac, J-L. 1980 Rech. Aérospatiale 3, 65.
Stewartson, K. 1958 Q. J. Mech. Appl. Maths 11, 398.
Stewartson, K. 1969 Mathematika 16, 106.
Stewartson, K. 1974 Adv. Appl. Mech. 14, 145.
Stewartson, K. 1981 SIAM Rev. 23, 308.
Stewartson, K., Smith, F. T. & Kaups, K. 1982 Stud. Appl. Maths 67, 45.
Stewartson, K. & Williams, P. G. 1973 Mathematika 20, 98.
Sychev, V. V. 1972 Izv. Akad. Nauk SSSR, Mekh. Zhid i Gaza 3, 47.
Vatsa, V. N., Werle, M. J. & Verdon, J. M. 1981 United Technologies Res. Center Rep. R81-914986-5; or AIAA paper 82-0165, presented at AIAA 20th Aerospace Sci. Meeting, Jan. 1982, Orlando, Florida.
Veldman, A. E. P. 1980 Netherlands Natl Aerospace Lab. Rep. NLR TR 79023.
Veldman, A. E. P. & Dijkstra, D. 1981 In Proc. 7th Intl Conf. Num. Methods in Fluid Dyn. (ed. W. C. Reynolds & R. W. MacCormack). Lecture Notes in Physics, vol. 141. Springer.
Veldman, A. E. P. & Vooren, A. I. VAN DE 1975 In Proc. 4th Intl Conf. Num. Methods in Fluid Dyn. (ed. R. D. Richtmyer). Lecture Notes in Physics, vol. 35, p. 422. Springer.
Viswanath, P. R. & Brown, J. L. 1982 AIAA paper 82–0348, presented at AIAA 20th Aerospace Sci. Meeting, Jan. 1982, Orlando, Florida.
Werle, M. J. & Verdon, J. M. 1980 In Proc. Int. Conf. Boundary and Interior Layers, June 1980, Trinity College, Dublin.
Williams, P. G., 1975 In Proc. 4th Int. Conf. Num. Methods in Fluid Dyn. (ed. R. D. Richtmyer). Lecture Notes in Physics, vol. 35. Springer.