Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-09T22:08:58.959Z Has data issue: false hasContentIssue false

Integral-equation solution of potential flow past a porous body of arbitrary shape

Published online by Cambridge University Press:  20 April 2006

Henry Power
Affiliation:
Instituto de Mecánica de Fluidos, Universidad Central de Venezuela
Guillermo Miranda
Affiliation:
Departamento de Matemáticas, Facultad de Ciencias, Universidad Central de Venezuela
Vianey Villamizar
Affiliation:
Departamento de Matemáticas, Facultad de Ciencias, Universidad Central de Venezuela

Abstract

Potential flow past a porous body of arbitrary shape with constant physical permeability k0, as well as the flow in the corresponding porous medium, are analysed by means of a pair of linear Fredholm integral equations of the second kind. As an example for verification of the proposed general method, the case of a two-dimensional porous circular cylinder is worked out in detail.

Type
Research Article
Copyright
© 1984 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Chow, S. K., How, A. Y. & Landweber, L. 1976 Hydrodynamic forces and moments acting on a body emerging from an infinite plane. Phys. Fluids 19, 14391449.Google Scholar
Fredholm, I. 1900 Sur une nouvelle méthode pour la résolution du probléme de Dirichlet. Kong. Vetenskaps-Akad. Forh., pp. 3946.
Gunter, N. M. 1967 Potential Theory and its Applications to the Basic Problems of Mathematical Physics. Ungar.
Swarztrauber, P. N. 1972 On the numerical solution of the Dirichlet problem for a region of general shape. SIAM J. Numer. Anal. 9, 300306.Google Scholar