Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-09T22:02:12.216Z Has data issue: false hasContentIssue false

Instabilities and turbulence in magnetohydrodynamic flow in a toroidal duct prior to transition in Hartmann layers

Published online by Cambridge University Press:  05 January 2012

Yurong Zhao
Affiliation:
Key Laboratory of Electromagnetic Processing of Materials, Northeastern University, Shenyang 110004, PR China Department of Mechanical Engineering, University of Michigan – Dearborn, 4901 Evergreen Road, Dearborn, MI 48128-1491, USA
Oleg Zikanov*
Affiliation:
Department of Mechanical Engineering, University of Michigan – Dearborn, 4901 Evergreen Road, Dearborn, MI 48128-1491, USA
*
Email address for correspondence: [email protected]

Abstract

Flow of an electrically conducting fluid in a toroidal duct of square cross-section is analysed. The flow is driven by the azimuthal Lorentz force resulting from the interaction between the radial electric currents created by the difference of electric potential maintained between the cylinder walls and the strong magnetic field imposed in the axial direction. The flow geometry and the value of the Hartmann number correspond to the experiment of Moresco & Alboussière (J. Fluid Mech., vol. 504, 2004, pp. 167–181). The purpose of the analysis is to reveal the flow features at Reynolds numbers below the threshold of transition to turbulence in Hartmann layers. We find that the flow experiences a complex evolution. The laminar base flow experiences the first instability at the Reynolds number significantly smaller than that of the threshold. The instability is axisymmetric and oscillatory. Turbulence appears at a slightly higher Reynolds number. Right up to the Hartmann layer instability, the turbulence remains localized in a layer near the outer cylinder wall. It is demonstrated that the turbulence may affect the transition in the Hartmann layers via unsteady forcing of the outer flow.

Type
Papers
Copyright
Copyright © Cambridge University Press 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Adams, J. C., Swarztrauber, P. & Sweet, R. 1999 Efficient fortran subprograms for the solution of separable elliptic partial differential equations. http://www.cisl.ucar.edu/css/software/fishpack/.Google Scholar
2.Alemany, A., Moreau, R., Sulem, P. L. & Frisch, U. 1979 Influence of an external magnetic field on homogeneous MHD turbulence. J. de Méc. 18, 277313.Google Scholar
3.Baylis, J. A. 1971 Experiments on laminar flow in curved channels of square section. J. Fluid Mech. 48 (3), 417422.CrossRefGoogle Scholar
4.Baylis, J. A. & Hunt, J. C. R. 1971 MHD flow in annular channel; theory and experiment. J. Fluid Mech. 48 (3), 423428.CrossRefGoogle Scholar
5.Boeck, T., Krasnov, D., Thess, A. & Zikanov, O. 2008 Large-scale intermittency of liquid-metal channel flow in a magnetic field. Phys. Rev. Lett. 101, 244501.CrossRefGoogle ScholarPubMed
6.Chandrasekhar, S. 1961 Hydrodynamic and Hydromagnetic Stability. Clarendon Press.Google Scholar
7.Davidson, P. A. 1999 Magnetohydrodynamics in materials processing. Annu. Rev. Fluid Mech. 31, 273300.CrossRefGoogle Scholar
8.Davidson, P. A. 2001 An Introduction to Magnetohydrodynamics. Cambridge University Press.CrossRefGoogle Scholar
9.Dean, W. R. 1928 Fluid motion in a curved channel. Proc. R. Soc. Lond. A 121, 402420.Google Scholar
10.Hartmann, J. 1937 Hg-dynamics I: theory of the laminar flow of an electrically conductive liquid in a homogeneous magnetic field. K. Dan. Vidensk. Selsk. Mat. Fys. Medd. 15 (6), 128.Google Scholar
11.Hartmann, J. & Lazarus, F. 1937 Hg-dynamics II: experimental investigations on the flow of mercury in a homogeneous magnetic field. K. Dan. Vidensk. Selsk. Mat. Fys. Medd. 15 (7), 145.Google Scholar
12.Kassinos, C., Knaepen, B. & Wray, A. 2006 Statistical measures of structural anisotropy in MHD turbulence subjected to mean shear and frame rotation. J. Turbul. 7 (1), 114.CrossRefGoogle Scholar
13.Khalzov, I. V., Smolyakov, A. I. & Ilgisonis, V. I. 2010 Equilibrium magnetohydrodynamic flows of liquid metals in magnetorotational instability experiments. J. Fluid Mech. 644, 257280.CrossRefGoogle Scholar
14.Kobayashi, H. 2008 Large eddy simulation of magnetohydrodynamic turbulent duct flows. Phys. Fluids 20, 015102.CrossRefGoogle Scholar
15.Krasnov, D. S., Zienicke, E., Zikanov, O., Boeck, T. & Thess, A. 2004 Numerical study of instability and transition to turbulence in the Hartmann flow. J. Fluid Mech. 504, 183211.CrossRefGoogle Scholar
16.Krasnov, D., Zikanov, O. & Boeck, T. 2011 Comparative study of finite difference approaches in simulation of magnetohydrodynamic turbulence at low magnetic Reynolds number. Comput. Fluids 50, 4659.CrossRefGoogle Scholar
17.Krasnov, D., Zikanov, O., Rossi, M. & Boeck, T. 2010 a Optimal growth and transition to turbulence in magnetohydrodynamic duct flow. In Proceedings of 3rd Joint US–European Fluids Engineering Summer Meeting, Montreal, Canada.CrossRefGoogle Scholar
18.Krasnov, D., Zikanov, O., Rossi, M. & Boeck, T. 2010b Optimal linear growth in magnetohydrodynamic duct flow. J. Fluid Mech. 653, 273299.CrossRefGoogle Scholar
19.Krasnov, D., Zikanov, O., Schumacher, J. & Boeck, T. 2008 Magnetohydrodynamic turbulence in a channel with spanwise magnetic field. Phys. Fluids 20 (9), 095105.CrossRefGoogle Scholar
20.Lingwood, R. J. & Alboussière, T. 1999 On the stability of the Hartmann layer. Phys. Fluids 11, 20582068.CrossRefGoogle Scholar
21.Moffatt, K. 1967 On the suppression of turbulence by a uniform magnetic field. J. Fluid Mech. 23, 571592.CrossRefGoogle Scholar
22.Moresco, P. & Alboussière, T. 2004 Experimental study of the instability of the Hartmann layer. J. Fluid Mech. 504, 167181.CrossRefGoogle Scholar
23.Morinishi, Y., Lund, T. S., Vasilyev, O. V. & Moin, P. 1998 Fully conservative higher order finite difference schemes for incompressible flow. J. Comput. Phys. 143, 90124.CrossRefGoogle Scholar
24.Müller, U. & Bühler, L. 2001 Magnetohydrodynamics in Channels and Containers. Springer.CrossRefGoogle Scholar
25.Ni, M.-J., Munipalli, R., Huang, P., Morley, N. B. & Abdou, M. A. 2007 A current density conservative scheme for incompressible MHD flows at a low magnetic Reynolds number. Part I. On a rectangular collocated grid system. J. Comput. Phys. 227, 174204.CrossRefGoogle Scholar
26.Potherat, A., Sommeria, J. & Moreau, R. 2000 An effective two-dimensional model for MHD flows with transverse magnetic field. J. Fluid Mech. 424, 75100.CrossRefGoogle Scholar
27.Shatrov, V. & Gerbeth, G. 2010 Marginal turbulent magnetohydrodynamic flow in a square duct. Phys. Fluids 22, 084101.CrossRefGoogle Scholar
28.Sisan, D. R., Mujica, N., Tillotson, W. A., Huang, Y.-M., Dorland, W., Hassam, A. B., Antonsen, T. M. & Lathrop, D. P. 2004 Experimental observation and characterization of the magnetorotational instability. Phys. Rev. Lett. 93, 114502.CrossRefGoogle ScholarPubMed
29.Smolentsev, S., Moreau, R. & Abdou, M. 2008 Characterization of key magnetohydrodynamic phenomena for PbLi flows for the US DCLL blanket. Fusion Engng Des. 83, 771783.CrossRefGoogle Scholar
30.Stefani, F., Gundrum, T., Gerbeth, G., Rüdiger, G., Schultz, M., Szklarski, J. & Hollerbach, R. 2006 Experimental evidence for magnetorotational instability in a Taylor–Couette flow under the influence of a helical magnetic field. Phys. Rev. Lett. 97, 184502.CrossRefGoogle Scholar
31.Streett, C. L. & Hussaini, M. Y. 1991 A numerical simulation of the appearance of chaos in finite-length Taylor–Couette flow. Appl. Numer. Maths 7 (1), 4171.CrossRefGoogle Scholar
32.Tabeling, P. & Chabrerie, J. P. 1981 Magnetohydrodynamic Taylor vortex flow under a transverse pressure gradient. Phys. Fluids 24 (3), 406412.CrossRefGoogle Scholar
33.Vantieghem, S. & Knaepen, B. 2011 Numerical simulation of magnetohydrodynamic flow in a toroidal duct of square cross-section. Intl J. Heat Fluid Flow 32, 11201128.CrossRefGoogle Scholar
34.Vorobev, A. & Zikanov, O. 2007 Instability and transition to turbulence in a free shear layer affected by a parallel magnetic field. J. Fluid Mech. 574, 131154.CrossRefGoogle Scholar
35.Vorobev, A., Zikanov, O., Davidson, P. A. & Knaepen, B. 2005 Anisotropy of magnetohydrodynamic turbulence at low magnetic Reynolds number. Phys. Fluids 17 (12), 125105.CrossRefGoogle Scholar
36.Zhao, Y., Zikanov, O. & Krasnov, D. 2011 Instability of magnetohydrodynamic flow in an annular channel at high Hartmann number. Phys. Fluids 23, 084103.CrossRefGoogle Scholar
37.Zikanov, O. 2010 Essential Computational Fluid Dynamics. Wiley.Google Scholar
38.Zikanov, O. & Thess, A. 1998 Direct numerical simulation of forced MHD turbulence at low magnetic Reynolds number. J. Fluid Mech. 358, 299333.CrossRefGoogle Scholar