Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-24T22:39:16.011Z Has data issue: false hasContentIssue false

The initial ionization of hydrogen in a strong shock wave

Published online by Cambridge University Press:  29 March 2006

A. N. Belozerov
Affiliation:
Institute for Aerospace Studies, University of Toronto Present address: Institute of Mechanics, Academy of Science, Moscow, USSR.
R. M. Measures
Affiliation:
Institute for Aerospace Studies, University of Toronto

Abstract

A theoretical and experimental investigation has been made of the initial ionization processes in a strong shock wave in hydrogen. The relaxation length for ionization, which is principally determined by the rate of excitation, was measured and from a comparison with the theory an estimate was obtained for the cross-section for atom-atom excitation collisions.

Detailed theoretical calculations showed that the electron temperature approaches to within 1 % of the atomic temperature in a distance that is small compared with the total relaxation length for ionization. This enabled considerable simplification, for it indicated that a single-temperature model could be used in calculating the theoretical relaxation profile over the experimental range of operating conditions. An electromagnetic shock tube, with a Philippov pinch to create the driver plasma, was employed to produce shock waves of the required velocity. The ionization behind the shock front was studied by means of a double-frequency Mach-Zehnder interferometer, with a ruby laser and a K.D.P. crystal as the light source. A close agreement between the theoretical and experimental electron density profiles, behind the shock front, was obtained for small relaxation lengths, when the cross-section for the atom-atom excitation collisions was assumed to be about 7 × 10−2 times that of the corresponding cross-section for electron-atom excitation collisions.

Type
Research Article
Copyright
© 1969 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ahlstrom, H. G., Mahaffey, D. W., Sanga, L. & Schoen, R. I. 1963 Boeing Report, ND 1-82-0321.
Alcock, A. J. & Ramsden, S. A. 1966 Appl. Phys. Lett. 8, 187.
Alpher, R. A. & White, D. R. 1959 Phys. Fluids, 2, 162.
Appleton, J. P. 1966 Phys. Fluids, 9, 336.
Bates, D. R., Kingston, A. E. & Mcwhirter, R. W. P. 1962 Proc. Roy. Soc. A, 270, 155.
Belozerov, A. N. 1968 UTIAS Rep. no. 131.
Bond, J. W. 1957 Phys. Rev. 105, 1682.
Brackmann, R. T., Fite, W. L. & Naynamber, R. M. H. 1958 Phys. Rev. 112, 115.
Burgess, A. 1963 Proc. 3rd Int. Cong. Physics of Electronics and Atomic Collisions.
Chang, C. T. 1962a RISO Rep. no. 35.
Chang, C. T. 1962b RISO Rep. no. 46.
Chang, C. T. 1965 Proc. 7th Int. Cong. Phenomena in Ionized Gases.
Cloupeau, M. 1963 Phys. Fluids, 6, 679.
Deboer, P. C. T. 1967 Phys. Fluids, 10, 2485.
Dubovol, A. V. & Nesterichin, Y. E. 1964 Dokl. A. N. USSR 154, 1310.
Fite, W. L. & Brackmann, R. T. 1958 Phys. Rev. 112, 1191.
Glass, I. I. & Hall, J. G. 1959 Handbook of Supersonic Aerodynamics Section 18, Shock Tubes, NAVORD Rep. 1488, Vol. 6.
Gryzinski, M. 1959 Phys. Rev. 115, 374.
Harwell, K. E. & Jahn, R. G. 1964 Phys. Fluids, 7, 214.
Korobeynikov, V. P., Melnikova, N. S. & Ryozanov, Y. V. 1961 Teoriya Tochechnogo Vzryva, Moscow.
Landolt, H. & BÖRNSTEIN, R. 1962 Zahlenwerte und Funktionen, vol. 2, no. 2b. Berlin: Springer-Verlag.
Lichten, W. & Schultz, S. 1959 Phys. Rev. 116, 1132.
Marlow, W. C. & Bershader, D. 1963 Dept. Aeron. Astron., Stanford University. SUDDAR no. 149.
Mclean, E. A., Faneutt, E., Kole, A. C. & Griem, H. R. 1960 Phys. Fluids, 3, 843.
Oettinger, P. E. 1966 Dept. Aeron. Astron., Stanford University. SUDDAR, 285.
Petschek, H. & Byron, S. 1957 Ann. Phys. 1, 270.
Philippov, N. V. & Philippova, T. I. 1965 Report I.A.E. 913, I.V. Kurchatov Institute Moscow.
Philippov, N. V., Philippova, T. I. & Vinogradov, V. P. 1962 Nucl. Fusion Suppl. Pt. 2, p. 577.
Presnyakov, L., Sobelman, I. & Vaishtein, L. 1963 Proc. 3rd Int. Cong. Physics of Electronic and Atomic Collisions.
Stabbings, R. F., Fite, W. L., Hummer, D. G. & Bhackman, R. T. 1960 Phys. Rev. 119, 1939.
Temkin, A. & Lamkin, J. C. 1961 Phys. Rev. 121, 788.
Wetzel, L. 1964 AIAA J. 2, 1208.
Weymann, D. H. 1958 Inst. Fluid Dyn. Appl. Math. University of Maryland. TN no. BN-144.
Wiese, W., Berg, H. F. & Griem, H. R. 1960 Phys. Rev. 120, 1079.
Wong, H. & Bershader, D. 1966 J. Fluid Mech. 26, 459.
Zhurin, V. V. & Sulyeav, V. A. 1963 Engng J. III, 4, 645.
Zhurin, V. V., Sulyeav, V. A. & Bukovskii, V. M. 1963 Engng J. III, 4.