Hostname: page-component-78c5997874-ndw9j Total loading time: 0 Render date: 2024-11-19T06:25:10.931Z Has data issue: false hasContentIssue false

Inhomogeneous distribution of a rigid fibre undergoing rectilinear flow between parallel walls at high Péclet numbers

Published online by Cambridge University Press:  10 July 2009

JOONTAEK PARK
Affiliation:
Department of Chemical Engineering, University of Florida, Gainesville, FL 32611, USA
JASON E. BUTLER*
Affiliation:
Department of Chemical Engineering, University of Florida, Gainesville, FL 32611, USA
*
Email address for correspondence: [email protected]

Abstract

We use slender-body theory to simulate a rigid fibre within simple shear flow and parabolic flow at zero Reynolds number and high Péclet numbers (weak Brownian motion). Hydrodynamic interactions of bulk fibres with the bounding walls are included using previously developed methods (Harlen, Sundararajakumar & Koch, J. Fluid Mech., vol. 388, 1999, pp. 355–388; Butler & Shaqfeh, J. Fluid Mech., vol. 468, 2002, pp. 205–237). We also extend a previous analytic theory (Park, Bricker & Butler, Phys. Rev. E, vol. 76, 2007, 04081) predicting the centre-of-mass distribution of rigid fibre suspensions undergoing rectilinear flow near a wall to compare the steady and transient distributions. The distributions obtained by the simulation and theory are in good agreement at sufficiently high shear rates, validating approximations made in the theory which predicts a net migration of the rigid fibres away from the walls due to a hydrodynamic lift force. The effect of the inhomogeneous distribution on the effective stress is also investigated.

Type
Papers
Copyright
Copyright © Cambridge University Press 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Agarwal, U. S., Dutta, A. & Mashelkar, R. A. 1994 Migration of macromolecules under flow: the physical origin and engineering implications. Chem. Engng Sci. 49, 16931717.CrossRefGoogle Scholar
Asokan, K., Ramamohan, T. R. & Kumaran, V. 2002 A novel approach to computing the orientation moments of spheroids in simple shear flow at arbitrary Péclet number. Phys. Fluids 14, 7584.CrossRefGoogle Scholar
Attansio, A., Bernini, U., Gallopo, P. & Segre, G. 1972 Significance of viscosity measurements in macroscopic suspensions of elongated particles. Trans. Soc. Rheol. 16, 147154.CrossRefGoogle Scholar
Ausserre, D., Edwards, J., Lecourtier, J., Hervet, H. & Rondelex, F. 1991 Hydro-dynamic thickening of depletion layers in colloidal solutions. Europhys. Lett. 14, 3338.CrossRefGoogle Scholar
Batchelor, G. K. 1970 Slender-body theory for particles of arbitrary cross-section in Stokes flow. J. Fluid Mech. 44, 419440.CrossRefGoogle Scholar
Batchelor, G. K. 1971 The stress generated in a non-dilute suspension of elongated particles by pure straining motion. J. Fluid Mech. 46, 813829.CrossRefGoogle Scholar
Beenakker, C. W. J. 1986 Ewald sum of the Rotne–Prager tensor. J. Chem. Phys. 85, 15811582.CrossRefGoogle Scholar
Blake, J. R. 1971 A note on the image system for a Stokeslet in a no-slip boundary. Proc. Cambridge Phil. Soc. 70, 303310.CrossRefGoogle Scholar
Brenner, H. 1974 Rheology of a dilute suspension of axisymmetric Brownian particles. Intl J. Multiphase Flow 1, 195341.CrossRefGoogle Scholar
Bricker, J. M. & Butler, J. E. 2007 Correlation between structures and microstructures in concentrated suspensions of non-Brownian spherical particles subject to unsteady shear flows. J. Rheol. 51, 735759.CrossRefGoogle Scholar
Bricker, J. M., Park, H.-O. & Butler, J. E. 2008 Rheology of semidilute suspensions of rigid polystyrene ellipsoids at high Péclet numbers. J. Rheol. 52, 941955.CrossRefGoogle Scholar
Butler, J. E. & Shaqfeh, E. S. G. 2002 Dynamic simulations of the inhomogeneous sedimentation of rigid fibers. J. Fluid Mech. 468, 205237.CrossRefGoogle Scholar
Butler, J. E. & Shaqfeh, E. S. G. 2005 Brownian dynamics simulations of a flexible polymer chain which includes continuous resistance and multibody hydrodynamic interactions. J. Chem. Phys. 122, 01491.CrossRefGoogle ScholarPubMed
Butler, J. E., Usta, O. B., Kekre, R. & Ladd, A. J. C. 2007 Kinetic theory of a confined polymer driven by an external force and pressure-driven flow. Phys. Fluids 19, 113101.CrossRefGoogle Scholar
Chaouche, M. & Koch, D. L. 2001 Rheology of non-Brownian rigid fiber suspensions with adhesive contacts. J. Rheol. 45, 369382.CrossRefGoogle Scholar
Chen, S. B. & Jiang, L. 1999 Orientation distribution in a dilute suspension of fibers subject to simple shear flow. Phys. Fluids 11, 28782890.CrossRefGoogle Scholar
Chen, S. B. & Koch, D. L. 1996 Rheology of dilute suspensions of charged fibers. Phys. Fluids 8, 27922807.CrossRefGoogle Scholar
Claeys, I. L. & Brady, J. F. 1989 Lubrication singularites of the grand resistance tensor for two arbitrary particles. Physico-Chem. Hydrodyn. 11, 261293.Google Scholar
Cobb, P. D. & Butler, J. E. 2005 Simulations of concentrated suspensions of rigid fibers: relationship between short-time diffusivities and the long-time rotational diffusion. J. Chem. Phys. 123, 054908.CrossRefGoogle ScholarPubMed
Cox, R. G. 1970 The motion of long slender bodies in a viscous fluid. Part 1. General theory. J. Fluid Mech. 44, 791810.CrossRefGoogle Scholar
Dhont, J. K. G. & Briels, W. J. 2003 Inhomogeneous suspensions of rigid rods in flow. J. Chem. Phys. 118, 1466.CrossRefGoogle Scholar
Doi, M. & Edwards, S. F. 1986 The Theory of Polymer Dynamics. Oxford University Press.Google Scholar
Fang, L., Hu, H. & Larson, R. 2005 DNA configuration and concentration in shearing flow near a glass surface in a microchannel. J. Rheol. 49, 127.CrossRefGoogle Scholar
Fixman, M. 1978 Simulation of polymer dynamics. Part 1. General theory. J. Chem. Phys. 69, 15271537.CrossRefGoogle Scholar
Ganani, E. & Powell, R. L. 1985 Suspensions of rodlike particles: literature review and data correlations. J. Composite Mater. 19, 194215.CrossRefGoogle Scholar
Grassia, P. S., Hinch, E. J. & Nitsche, L. C. 1995 Computer simulations of Brownian motion of complex systems. J. Fluid Mech. 282, 373403.CrossRefGoogle Scholar
Happel, J. & Brenner, H. 1965 Low Reynolds Number Hydrodynamics. Prentice Hall.Google Scholar
Harlen, O. G., Sundararajakumar, R. R. & Koch, D. L. 1999 Numerical simulation of a sphere settling through a suspension of neutrally buoyant fibers. J. Fluid Mech. 388, 355388.CrossRefGoogle Scholar
Hasimoto, H. 1959 On the periodic fundamental solutions of the Stokes equations and their application to viscous flow past a cubic array of spheres. J. Fluid Mech. 5, 317328.CrossRefGoogle Scholar
Hernández-Ortiz, J. P., de Pablo, J. J. & Graham, M. D. 2006 Cross-stream-line migration in confined flowing polymer solutions: theory and simulation. Phys. Fluids 18, 123101.CrossRefGoogle Scholar
Hijazi, A. & Khater, A. 2001 Brownian dynamics simulations of rigid rod-like macromolecular particles flowing in bounded channels. Comput. Mater. Sci. 22, 279290.CrossRefGoogle Scholar
Hijazi, A. & Zoaeter, M. 2002 Brownian dynamics simulations of rigid rod-like particlesin dilute flowing solution. Eur. Polym. J. 38, 22072211.CrossRefGoogle Scholar
Hinch, E. J. & Leal, L. G. 1972 The effect of Brownian motion on the rheological properties of suspension of non-spherical particles. J. Fluid Mech. 52, 683712.CrossRefGoogle Scholar
Hinch, E. J. & Leal, L. G. 1976 Constitutive equations in suspension mechanics. Part 2. Approximate forms for a suspension of rigid particles affected by Brownian rotations. J. Fluid Mech. 76, 187208.CrossRefGoogle Scholar
Hoda, N. & Kumar, S. 2007 a Brownian dynamics simulations of polyelectrolyte adsorption in shear flow with hydrodynamic. J. Chem. Phys. 127, 234902.CrossRefGoogle ScholarPubMed
Hoda, N. & Kumar, S. 2007 b Kinetic theory of polyelectrolyte adsorption in shear flow. J. Rheol. 51, 799820.CrossRefGoogle Scholar
Hoda, N. & Kumar, S. 2008 Brownian dynamics simulations of polyelectrolyte adsorption in shear flow: effects of solvent quality and charge patterning. J. Chem. Phys. 128, 164907.CrossRefGoogle ScholarPubMed
Holm, R. & Söderberg, D. 2007 Shear influence on fibre orientation: dilute suspension in the near wall region. Rheol. Acta 46, 721729.CrossRefGoogle Scholar
Hsu, R. & Ganatos, P. 1976 Gravitational and zero-drag motion of a spheroid adjacent to an inclined plane at low Reynolds number. J. Fluid Mech. 268, 267.CrossRefGoogle Scholar
Jendrejack, R. M., Schwartz, D. C., de Pablo, J. J. & Graham, M. D. 2004 Shear-induced migration in flowing polymer solutions: simulation of long-chain DNA in microchannels. J. Chem. Phys. 120, 25132519.CrossRefGoogle ScholarPubMed
Leal, L. G. & Hinch, E. J. 1971 The effect of weak Brownian rotation on particles in shear flow. J. Fluid Mech. 46, 685703.CrossRefGoogle Scholar
Liron, N. & Mochon, S. 1976 Stokes flow for a Stokeslet between two parallel flat plates. J. Engng Math. 10, 287303.CrossRefGoogle Scholar
Ma, H. & Graham, M. 2005 Theory of shear-induced migration in dilute polymer solutions near solid boundaries. Phys. Fluids 17, 083103.CrossRefGoogle Scholar
Mody, N. A. & King, M. R. 2005 Three-dimensional simulations of a platelet-shaped spheroid near a wall in shear flow. Phys. Fluids 17, 113302.CrossRefGoogle Scholar
Morse, D. C. 2004 Theory of constrained Brownian motion. Adv. Chem. Phys. 128, 65189.Google Scholar
Moses, K. B., Advani, S. G. & Reinhardt, A. 2001 Investigation of fiber motion near solid boundaries in simple shear flow. Rheol. Acta 40, 296306.CrossRefGoogle Scholar
Nitsche, L. C. & Hinch, E. J. 1997 Shear-induced lateral migration of Brownian rigid rods in parabolic channel flow. J. Fluid Mech. 332, 121.CrossRefGoogle Scholar
Nitsche, J. M. & Roy, P. 1996 Shear-induced alignment of nonspherical Brownian particles near walls. AIChE J. 42, 27292742.CrossRefGoogle Scholar
Nott, P. R. & Brady, J. F. 1994 Pressure-driven flow of suspensions: simulation and theory. J. Fluid Mech. 275, 157199.CrossRefGoogle Scholar
Olla, P. 1999 Simplified model for red cell dynamics in small blood vessels. Phys. Rev. Lett. 82, 453456.CrossRefGoogle Scholar
de Pablo, J. J., Ottinger, H. C. & Rabin, Y. 1992 Hydrodynamic changes of the depletion layer of dilute polymer solutions near a wall. AIChE J. 38, 273283.CrossRefGoogle Scholar
Park, J., Bricker, J. M. & Butler, J. E. 2007 Cross-stream migration in dilute solutions of rigid polymers undergoing rectilinear flow near a wall. Phys. Rev. E 76, 040801.Google ScholarPubMed
Petrie, C. J. S. 1999 The rheology of fibre suspensions. J. Non-Newton. Fluid Mech. 87, 369402.CrossRefGoogle Scholar
Pryamitsyn, V. & Ganesan, V. 2008 Screening of hydrodynamic interactions in Brownian rod suspensions. J. Chem. Phys. 128, 134901.CrossRefGoogle ScholarPubMed
Rotne, J. & Prager, S. 1969 Variational treatment of hydrodynamic interaction in polymers. J. Chem. Phys. 50, 48314837.CrossRefGoogle Scholar
Saintillan, D., Shaqfeh, E. S. G. & Darve, E. 2006 a Effect of flexibility on the shear-induced migration of short-chain polymers in parabolic channel flow. J. Fluid Mech. 557, 297306.CrossRefGoogle Scholar
Saintillan, D., Shaqfeh, E. S. G. & Darve, E. 2006 b The growth of concentration fluctuations in dilute dispersions of orientable and deformable particles under sedimentation. J. Fluid Mech. 553, 347388.CrossRefGoogle Scholar
Saintillan, D., Shaqfeh, E. S. G. & Darve, E. 2006 c Hydrodynamic interactions in the induced-charge electrophoresis of colloidal rod dispersions. J. Fluid Mech. 563, 223259.CrossRefGoogle Scholar
Schiek, R. L. & Shaqfeh, E. S. G. 1995 A nonlocal theory for stress in bound, Brownian suspensions of slender, rigid fibers. J. Fluid Mech. 296, 271324.CrossRefGoogle Scholar
Schiek, R. L. & Shaqfeh, E. S. G. 1997 Cross–streamline migration of slender Brownian fibres in plane Poiseuille flow. J. Fluid Mech. 332, 2339.CrossRefGoogle Scholar
Shaqfeh, E. S. G. & Fredrickson, H. 1990 The hydrodynamic stress in a suspension of rods. Phys. Fluids A 2, 724.CrossRefGoogle Scholar
Singh, A. & Nott, P. 2000 Normal stresses and microstructure in bounded sheared suspensions via Stokesian dynamics simulations. J. Fluid Mech. 412, 279301.CrossRefGoogle Scholar
Staben, M. E., Zinchenko, A. Z. & Davis, R. H. 2003 Motion of a particle between two parallel plane walls in low-Reynolds-number Poiseuille flow. Phys. Fluids 15, 17111733.CrossRefGoogle Scholar
Stone, H. A., Stroock, A. D. & Ajdari, A. 2004 Engineering flows in small devices: microfluidics towards a lab-on-a-chip. Annu. Rev. Fluid Mech. 36, 381411.CrossRefGoogle Scholar
Stover, C. A. & Cohen, C. 1990 The motion of rodlike particles in the pressure-driven flow between two flat plates. Rheol. Acta 29, 192203.CrossRefGoogle Scholar
Stover, C. A., Koch, D. L. & Cohen, C. 1992 Observations of fibre orientation in simple shear flow of semi-dilute suspensions. J. Fluid Mech. 238, 277296.CrossRefGoogle Scholar
Sundararajakumar, R. R. & Koch, D. L. 1997 Structure and properties of sheared fiber suspensions with mechanical contacts. J. Non-Newton. Fluid Mech. 73, 205239.CrossRefGoogle Scholar
Tornberg, A.-K. & Gustavsson, K. 2006 A numerical method for simulations of rigid fiber suspensions. J. Comput. Phys. 215, 172196.CrossRefGoogle Scholar
Usta, O. B., Butler, J. E. & Ladd, A. J. C. 2006 Flow induced migration of polymers in dilute solution. Phys. Fluids 18, 031703.CrossRefGoogle Scholar
Usta, O. B., Butler, J. E. & Ladd, A. J. C. 2007 Transverse migration of a confined polymer driven by an external force. Phys. Rev. Lett. 98, 098301.CrossRefGoogle ScholarPubMed
Yang, S. M. & Leal, L. G. 1984 Particle motion in Stokes flow near a plane fluid-fluid interface. Part 2. Linear shear and axisymmetric straining flows. J. Fluid Mech. 149, 275304.CrossRefGoogle Scholar
Zurita-Gotor, M., Bławzdziewicz, J. & Wajnryb, E. 2007 Motion of a rod-like particle between parallel walls with application to suspension rheology. J. Rheol. 51, 7197.CrossRefGoogle Scholar