Hostname: page-component-78c5997874-8bhkd Total loading time: 0 Render date: 2024-11-04T19:29:40.879Z Has data issue: false hasContentIssue false

The influence of thermal noise on the onset of travelling-wave convection in binary fluid mixtures: an experimental investigation

Published online by Cambridge University Press:  26 April 2006

Wolfgang Schöpf
Affiliation:
Physikalisches Institut der Universität Bayreuth, 95440 Bayreuth, Germany Present address: Centre for Water Research, University of Western Australia, Nedlands WA 6009, Australia
Ingo Rehberg
Affiliation:
Physikalisches Institut der Universität Bayreuth, 95440 Bayreuth, Germany

Abstract

When dealing with systems showing a Hopf bifurcation as the first instability from a conductive state leading to travelling waves, the distinction between convective and absolute instability becomes significant. The convectively unstable regime is characterized by the fact that a homogeneous disturbance may have a positive growth rate, while a single localized perturbation cannot trigger the onset of nonlinear convection. In this paper the convective instability occurring in binary fluid mixtures for a negative separation ratio is utilized for amplifying intrinsic thermal fluctuations, which in this way become accessible to quantitative measurements. The experiments are performed in a quasi-one-dimensional convection channel which, by means of subcritical ramps, effectively prevents the reflection of the travelling waves from the sidewalls. Thus, that range of the convective instability within which linear waves can be observed is strongly enhanced. The temperature variations involved in the observed travelling-wave states are quantified by using the shadowgraph method. By resonantly stimulating the system with its linear Hopf frequency, the reflection ability and some coefficients of the amplitude equation appropriate for describing the convection features near onset can be determined. Without stimulation, travelling-wave states of very small amplitudes showing an erratic spatio-temporal behaviour occur spontaneously inside the convectively unstable regime. The temporal correlation function calculated from the measured light intensity caused by these states is compared with a theoretical expression obtained from a Ginzburg—Landau equation containing a noise term. A very good agreement is found for the amplitude if thermal noise is assumed to be the reason for these fluctuating convection rolls, thus supporting the idea that the response of the system to thermal fluctuations is observed.

Type
Research Article
Copyright
© 1994 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ahlers, G., Cross, M. C., Hohenberg, P. C. & Safran, S. 1981 J. Fluid Mech. 110, 297.
Akhiezer, A. I. & Polovin, R. V. 1971 Usp. Fiz. Nauk 104, 185 [1971 Sov. Phys. Uspekhi 14, 278].
Babcock, K. L., Ahlers, G. & Cannell, D. S. 1991 Phys. Rev. Lett. 67, 3388.
Babcock, K. L., Cannell, D. S. & Ahlers, G. 1992 Physica D 61, 40.
Barten, W., Lücke, M., Hort, W. & Kamps, M. 1989 Phys. Rev. Lett. 63, 376.
Bénard, H. 1900 Revue Gén. Sci. Pures et Appl. 11, 1261 and 1309.
Bensimon, D., Kolodner, P., Surko, C. M., Williams, H. & Croquette, V. 1990 J. Fluid Mech. 217, 441.
Bodenschatz, E., Morris, S. W., Bruyn, J. R. de, Ahlers, G. & Cannell, D. S. 1992 In The Physics of Pattern Formation in Complex Dissipative Systems (ed. S. Kai), p. 227. World Scientific.
Bodenschatz, E., Zimmermann, W. & Kramer, L. 1988 J. Phys. (Paris) 49, 1875.
Brand, H. R., Hohenberg, P. C. & Steinberg, V. 1984 Phys. Rev. A 30, 2548.
Brand, H. R., Lomdahl, P. S. & Newell, A. C. 1986 Physica 23D, 345.
Brand, H. R. & Steinberg, V. 1983 Physica 119A, 327.
Bretherton, C. S. & Spiegel, E. A. 1983 Phys. Lett. 96A, 152.
Briggs, R. J. 1964 Electron–Stream Interaction with Plasmas. Research Monograph No. 29. MIT Press.
Busse, F. H. & Kramer, L. (ed.) 1990 Nonlinear Evolution of Spatio-Temporal Structures in Dissipative Continuous Systems. Plenum.
Busse, F. H. & Whitehead, J. A. 1971 J. Fluid Mech. 47, 305.
Busse, F. H. & Whitehead, J. A. 1974 J. Fluid Mech. 66, 67.
Chandrasekhar, S. 1961 Hydrodynamic and Hydromagnetic Stability. Oxford University Press.
Chock, D. P. & Li, C. 1975 Phys. Fluids 18, 1401.
Coullet, P. & Huerre, P. (ed.) 1990 New Trends in Nonlinear Dynamics and Pattern-Forming Phenomena: The Geometry of Nonequilibrium. Plenum.
Coullet, P. H. & Spiegel, E. A. 1983 SIAM J. Appl. Maths 43, 776.
Croquette, V. & Williams, H. 1989 Physica D 37, 300.
Cross, M. C. 1986 Phys. Rev. Lett. 57, 2935.
Cross, M. C. 1988 Phys. Rev. A38, 3593.
Cross, M. C. & Kim, K. 1988 Phys. Rev. A37, 3909.
Deissler, R. J. 1985 J. Statist. Phys. 40, 371.
DiPrima, R. C. & Swinney, H. L. 1981 In Hydrodynamical Instabilities and the Transition to Turbulence (ed. H. L. Swinney & J. P. Gollub), p. 139. Springer.
Fineberg, J., Moses, E. & Steinberg, V. 1988 Phys. Rev. Lett. 61, 838.
Frick, H. & Clever, R. M. 1980 Z. Angew. Math. Phys. 31, 502.
Gershuni, G. Z. & Zhukhovitskii, E. M. 1976 Convective Stability of Incompressible Fluids. Keter.
Graham, R. 1974 Phys. Rev. A 10, 1762.
Graham, R. & Pleiner, H. 1975 Phys. Fluids 18, 130.
Heutmaker, M. S., Fraenkel, P. N. & Gollub, J. P. 1985 Phys. Rev. Lett. 54, 1369.
Hohenberg, P. C. & Swift, J. 1992 Phys. Rev. A 46, 4773.
Huerre, P. & Monkewitz, P. A. 1985 J. Fluid Mech. 159, 151.
Hurle, D. T. J. & Jakeman, E. 1971 J. Fluid Mech. 47, 667.
Khalatnikov, I. M. 1957 Zh. Exsp. Teor. Fiz. 33, 809 [1957 Sov. Phys. JETP 6, 624].
Knobloch, E. 1986 Phys. Rev. A34, 1538.
Knobloch, E. & Moore, D. R. 1988 Phys. Rev. A 37, 860.
Knobloch, E. & Proctor, M. R. E. 1981 J. Fluid Mech. 108, 291.
Kolodner, P. 1993 Phys. Rev. E 48, 4187.
Kolodner, P., Glazier, J. A. & Williams, H. 1990 Phys. Rev. Lett. 65, 1579.
Kolodner, P., Passner, A., Surko, C. M. & Walden, R. W. 1986a Phys. Rev. Lett. 56, 2621.
Kolodner, P. & Surko, C. M. 1988 Phys. Rev. Lett. 61, 842.
Kolodner, P., Surko, C. M., Passner, A. & Williams, H. L. 1987 Phys. Rev. A36, 2499.
Kolodner, P., Walden, R. W., Passner, A. & Surko, C. M. 1986b J. Fluid Mech. 163, 195.
Kolodner, P., Williams, H. & Moe, C. 1988 J. Chem. Phys. 88, 6512.
Landau, L. D. & Lifshitz, E. M. 1957 Zh. Exsp. Teor. Fiz. 32, 618 [1957 Sov. Phys. JETP 5, 512].
Landau, L. D. & Lifshitz, E. M. 1959 Fluid Mechanics. Pergamon.
Lee, G. W. T., Lucas, P. & Tyler, A. 1983 J. Fluid Mech. 135, 235.
Legros, J. C., Longree, D., Chavepeyer, G. & Patten, J. K. 1975 Physica 80A, 76.
Lekkerkerker, H. N. W. 1975 In Fluctuations, Instabilities and Phase Transitions (ed. T. Riste), p. 189. Plenum Press.
Lekkerkerker, H. N. W. & Laidlaw, W. G. 1977 J. Phys. (Paris) 38, 1.
Lhost, O. & Platten, J. K. 1988 Phys. Rev. A 38, 3147.
Lhost, O. & Platten, J. K. 1989 Phys. Rev. A 40, 6415.
Linz, S. J. & Lücke, M. 1987 Phys. Rev. A 35, 3997.
Lusty, M. E. & Dunn, M. H. 1987 Appl. Phys. B 44, 193.
Meyer, C. W., Ahlers, G. & Cannell, D. S. 1991 Phys. Rev. A 44, 2514.
Moses, E. & Steinberg, V. 1986 Phys. Rev. A 34, 693.
Newell, A. C. 1974 Lect. Appl. Math. 15, 157.
Newell, A. C. & Whitehead, J. 1969 J. Fluid Mech. 38, 279.
Nield, D. A. 1967 J. Fluid Mech. 29, 545.
Pedersen, A. M. & Riste, T. 1980 Z. Phys. B 37, 171.
Platten, J. K. & Legros, L. C. 1984 Convection in Liquids. Springer.
Rasenat, S., Hartung, G., Winkler, B. L. & Rehberg, I. 1989 Exp. Fluids 7, 412.
Rayleigh, Lord 1916 Phil. Mag. 32, 529.
Rehberg, I. & Ahlers, G. 1985 Phys. Rev. Lett. 55, 500.
Rehberg, I., Hörner, F., Chiran, L., Richter, H. & Winkler, B. L. 1991a Phys. Rev. A 44, 7885.
Rehberg, I., Rasenat, S., Torre Juárez, M. de la, Schöpf, W., Hörner, F., Ahlers, G. & Brand, H. R. 1991b Phys. Rev. Lett. 67, 596.
Rehberg, I., Winkler, B. L., Torre Juárez, M. de la, Rasenat, S. & Schöpf, W. 1989 Festkörperprobleme 29, 35.
Saarlos, W. van & Hohenberg, P. C. 1990 Phys. Rev. Lett. 64, 749.
Schöpf, W. 1992 J. Fluid Mech., 245, 263.
Schöpf, W. & Kramer, L. 1991 Phys. Rev. Lett. 66, 2316.
Schöpf, W. & Rehberg, I. 1992 Europhys. Lett. 17, 321.
Schöpf, W. & Zimmermann, W. 1989 Europhys. Lett. 8, 41.
Schöpf, W. & Zimmermann, W. 1990 Phys. Rev. A 41, 1145.
Schöpf, W. & Zimmermann, W. 1993 Phys. Rev. E 47, 1739.
Schulz-DuBois, E. O. & Rehberg, I. 1981 Appl. Phys. 24, 323.
Smith, I. W., Galerne, Y., Lagerwall, S. T., Dubois-Violette, E. & Durand, G. 1975 J. Phys. Coll. C 1, 237.
Stanley, H. E. 1971 Introduction to Phase Transitions and Critical Phenomena. Oxford University Press.
Steinberg, V., Ahlers, G. & Cannell, D. S. 1985 Physica Scripta T 9, 97.
Steinberg, V., Fineberg, J., Moses, E. & Rehberg, I. 1989 Physica D 37, 359.
Stewartson, J. & Stewart, J. T. 1971 J. Fluid Mech. 48, 529.
Sullivan, T. S. & Ahlers, G. 1988 Phys. Rev. Lett. 61, 78.
Swift, J. & Hohenberg, P. C. 1977 Phys. Rev. A 15, 319.
Swinney, H. L. & Gollub, J. P. (ed.) 1981 Hydrodynamical Instabilities and the Transition to Turbulence. Springer.
Taylor, G. I. 1923 Phil. Trans. R. Soc. 223, 289.
Tsameret, A. & Steinberg, V. 1991 Phys. Rev. Lett. 67, 3392.
Thual, O. & Fauve, S. 1988 J. Phys. (Paris) 49, 1829.
Walden, R. W., Kolodner, P., Passner, A. & Surko, C. M. 1985 Phys. Rev. Lett. 55, 496.
Wesfreid, J. E., Brand, H. R., Manneville, P., Albinet, G. & Boccara, N. (ed.) 1988 Propagation in Systems Far from Equilibrium. Springer.
Zaĭtsev, V. M. & Shliomis, M. I. 1970 Zh. Exsp. Teor. Fiz. 59, 1583 [1971 Sov. Phys. JETP 32, 866].