Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-09T22:15:29.606Z Has data issue: false hasContentIssue false

Influence of slip on the dynamics of two-dimensional wakes

Published online by Cambridge University Press:  25 August 2009

DOMINIQUE LEGENDRE*
Affiliation:
Université de Toulouse; INPT, UPS; (Institut de Mécanique des Fluides de Toulouse IMFT); Allée Camille Soula, F-31400 Toulouse, France CNRS; IMFT; F-31400 Toulouse, France
ERIC LAUGA
Affiliation:
Department of Mechanical and Aerospace Engineering, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0411, USA
JACQUES MAGNAUDET
Affiliation:
Université de Toulouse; INPT, UPS; (Institut de Mécanique des Fluides de Toulouse IMFT); Allée Camille Soula, F-31400 Toulouse, France CNRS; IMFT; F-31400 Toulouse, France
*
Email address for correspondence: [email protected]

Abstract

We study numerically the two-dimensional flow past a circular cylinder as a prototypical transitional flow, and investigate the influence of a generic slip boundary condition on the wake dynamics. We show that slip significantly delays the onset of recirculation and shedding in the wake behind the cylinder. As expected, the drag on the cylinder decreases with slip, with an increased drag sensitivity for large Reynolds numbers. We also show that past the critical shedding Reynolds number, slip decreases the vorticity intensity in the wake, as well as the lift forces on the cylinder, but increases the shedding frequency. We further provide evidence that the shedding transition can be interpreted as a critical accumulation of surface vorticity, similarly to related studies on wake instability of axisymmetric bodies. Finally, we propose that our results could be used as a passive method to infer the effective friction properties of slipping surfaces.

Type
Papers
Copyright
Copyright © Cambridge University Press 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Bartolo, D., Bouamrirene, F., Verneuil, E., Buguin, A., Silberzan, P. & Moulinet, S. 2006 Bouncing or sticky droplets: impalement transitions on superhydrophobic micropatterned surfaces. Europhys. Lett. 74, 299305.CrossRefGoogle Scholar
Calmet, I. & Magnaudet, J. 1997 Large eddy simulation of high-Schmidt-number mass transfer in a turbulent channel flow. Phys. Fluids 9, 438455.CrossRefGoogle Scholar
Chen, J.-H., Pritchard, W. G. & Tavener, S. J. 1995 Bifurcation for flow past a cylinder between parallel planes. J. Fluid Mech. 284, 2341.CrossRefGoogle Scholar
Dennis, C. S. R. & Chang, G. 1970 Numerical solution for steady flow past a circular cylinder at Reynolds number up to 100. J. Fluid Mech. 12, 471489.CrossRefGoogle Scholar
Gogte, S., Vorobieff, P., Truesdell, R., Mammoli, A., van Swol, F., Shah, P. & Brinker, C. J. 2005 Effective slip on textured superhydrophobic surfaces. Phys. Fluids 17, 051701.CrossRefGoogle Scholar
Granick, S., Zhu, Y. X. & Lee, H. 2003 Slippery questions about complex fluids flowing past solids. Nature Mat. 2, 221227.CrossRefGoogle ScholarPubMed
Karniadakis, G. E. & Triantafyllou, G. S. 1989 Frequency selection and asymptotic states in laminar wakes. J. Fluid Mech. 199, 441469.CrossRefGoogle Scholar
Lauga, E., Brenner, M. P. & Stone, H. A. 2007 Microfluidics: the no-slip boundary condition. In Handbook of Experimental Fluid Dynamics (ed. Yarin, A., Tropea, C. & Foss, J. F.). Springer.Google Scholar
Lauga, E. & Cossu, C. 2005 A note on the stability of slip channel flows. Phys. Fluids 17, 088106.CrossRefGoogle Scholar
Leal, L. G. 1989 Vorticity transport and wake structure for bluff bodies at finite Reynolds number. Phys. Fluids A 1, 124131.CrossRefGoogle Scholar
Magnaudet, J. & Mougin, G. 2007 Wake instability of a fixed spheroidal bubble. J. Fluid Mech. 572, 311337.CrossRefGoogle Scholar
Magnaudet, J., Rivero, M. & Fabre, J. 1995 Accelerated flows past a rigid sphere or a spherical bubble. Part 1. Steady straining flow. J. Fluid Mech. 284, 97135.CrossRefGoogle Scholar
Min, T. G. & Kim, J. 2004 Effects of hydrophobic surface on skin-friction drag. Phys. Fluids 16, L55L58.CrossRefGoogle Scholar
Neto, C., Evans, D. R., Bonaccurso, E., Butt, H. J. & Craig, V. S. J. 2005 Boundary slip in Newtonian liquids: a review of experimental studies. Rep. Progr. Phys. 68, 28592897.CrossRefGoogle Scholar
Ou, J., Perot, B. & Rothstein, J. P. 2004 Laminar drag reduction in microchannels using ultrahydrophobic surfaces. Phys. Fluids 16, 46354643.CrossRefGoogle Scholar
Persillon, H. & Braza, M. 1998 Physical analysis of the transition to turbulence in the wake of a circular cylinder by three-dimensional Navier–Stokes simulation. J. Fluid Mech. 365, 2388.CrossRefGoogle Scholar
Quéré, D. 2005 Non-sticking drops. Rep. Prog. Phys. 68, 24952532.CrossRefGoogle Scholar
Squires, T. M. & Quake, S. R. 2005 Microfluidics: fluid physics at the nanoliter scale. Rev. Mod. Phys. 77, 9771026.CrossRefGoogle Scholar
Stone, H. A., Stroock, A. D. & Ajdari, A. 2004 Engineering flows in small devices: microfluidics toward a lab-on-a-chip. Ann. Rev. Fluid Mech. 36, 381411.CrossRefGoogle Scholar
Vinogradova, O. I. 1999 Slippage of water over hydrophobic surfaces. Intl J. Mineral Process. 56, 3160.CrossRefGoogle Scholar
Williamson, C. H. K. 1988 Defining a universal and continuous Strouhal–Reynolds number relationship for the laminar vortex shedding of a circular cylinder. Phys. Fluids 31, 27422744.CrossRefGoogle Scholar
Williamson, C. H. K. 1996 Vortex dynamics in the cylinder wake. Ann. Rev. Fluid Mech. 28, 477539.CrossRefGoogle Scholar
Ybert, C., Barentin, C., Cottin-Bizonne, C., Joseph, P. & Bocquet, L. 2007 Achieving large slip with superhydrophobic surfaces: scaling laws for generic geometries. Phys. Fluids 19, 123601.CrossRefGoogle Scholar
You, D. & Moin, P. 2007 Effects of hydrophobic surfaces on the drag and lift of a circular cylinder. Phys. Fluids 19, 081701.CrossRefGoogle Scholar