Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2025-01-04T04:45:03.195Z Has data issue: false hasContentIssue false

Influence of rotation on the near-wake development behind an impulsively started circular cylinder

Published online by Cambridge University Press:  20 April 2006

Madeleine Coutanceau
Affiliation:
Laboratoire de Mécanique des Fluides
Laboratoire associé au C.N.R.S. dans le cadre du L.A. n° 91.
, 40, Avenue du Recteur Pineau, 86022 Poitiers Cedex, France
Christian Ménard
Affiliation:
Laboratoire de Mécanique des Fluides
Laboratoire associé au C.N.R.S. dans le cadre du L.A. n° 91.
, 40, Avenue du Recteur Pineau, 86022 Poitiers Cedex, France

Abstract

The early phase of the establishment of the flow past a circular cylinder started impulsively into rotation and translation is investigated by visualizing the flow patterns with solid tracers and by analysing qualitatively (flow topology) and quantitatively (velocity distributions and singular-point trajectories) the corresponding photographs. The range considered corresponds to moderate Reynolds numbers (Re [les ] 1000). The rotating-to-translating-speed ratio α increases from 0 to 3.25 and the motion covers a period during which the cylinder translates 4.5 or even 7 times its diameter. The details of the mechanisms of the near-wake formation are considered in particular and the increase of the flow asymmetry with increase in rotation is pointed out. Thus the existence of two regimes has been confirmed with the creation or non-creation of alternate eddies after an initial one E1 Furthermore, the new phenomena of saddle-point transposition and intermediate-eddy coalescence have been identified in the formation or shedding of respectively the odd and even subsequent eddies Ei (i = 2,3,…) when they exist. The very good agreement between these experimental data and the numerical results of Badr & Dennis (1985), obtained by solving the Navier-Stokes equations and presented in a parallel paper, confirms their respective validity and permits the determination of the flow characteristics not accessible, or accessible only with difficulty, to the present experiments. These flow properties such as drag and vorticity are capable of providing information on the Magnus effect for the former property and on unsteady separated flows for the latter.

Type
Research Article
Copyright
© 1985 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Badr, H. M. & Dennis S. C. R. 1985 Time-dependent viscous flow past an impulsively started rotating and translating circular cylinder. J. Fluid Mech. 158, 447488.Google Scholar
Badr H. M., Coutanceau M., Dennis, S. C. R. & Ménard C. 1985 Sur un comparaison des calculs numériques et des visualisations de l’écoulement d'un fluide visqueux, engendré par un cylindre en translation et en rotation. C. R. Acad. Sci. Paris, t. 300, II. no. 12, 529533.Google Scholar
Batchelor G. K. 1967 An Introduction to Fluid Dynamics. Cambridge University Press.
Bickley W. G. 1928 The influence of vortices upon the resistance experienced by solids moving through a liquid Proc. R. Soc. Lond. A 119, 146156.Google Scholar
Bouard R. 1983 Etude de l’écoulement autour d'un cylindre soumis à une translation uniforme après un départ impulsif pour des nombres de Reynolds allant de 0 à 104. Thèse de Doctorat d'Etat de l'Université de Poitiers.
Bouard, R. & Coutanceau M. 1980 The early stage of development of the wake behind an impulsively started cylinder for 40 Re 104 J. Fluid Mech. 101, 583607.Google Scholar
Calamote J. 1984 Effets de la rotation sur le sillage de cylindres tournants. Thèse de 3ème cycle de l'Université Aix-Marseille II.
Charrier B. 1979 Etude théorique et expérimentale de l'effet ‘Magnus’ destiné à la propulsion éolienne de navires. Thèse de 3ème cycle de l'Université de Paris VI.
Coutanceau, M. & Bouard R. 1977a Experimental determination of the main features of the viscous flow in the wake of a circular cylinder in uniform translation. Part 1. Steady flow. J. Fluid Mech. 79, 231256.Google Scholar
Coutanceau, M. & Bouard R. 1977b Experimental determination of the main features of the viscous flow in the wake of a circular cylinder in uniform translationPart 2. Unsteady flow. J. Fluid Mech. 79, 257272.Google Scholar
Diaz F., GavaldÀ J., Kawall J. G., Keffer, J. K. & Giralt F. 1983 Vortex shedding from a spinning cylinder. Phys. Fluids 26, 34543460.Google Scholar
Glauert M. B. 1957a A boundary layer theorem, with application to rotating cylinders. J. Fluid Mech. 2, 8999.Google Scholar
Glauert M. B. 1957b The flow past a rapidly rotating cylinder Proc. R. Soc. Lond. A 242, 108115.Google Scholar
Gustafson T. 1933 On the Magnus effect according to the asymptotic hydrodynamic theory. Hakan Ohlssons Buchdruckerei, Lund (Sweden) (transl. NACA N-25921, 1954).
Honji, H. & Taneda S. 1969 Unsteady flow past a circular cylinder. J. Phys. Soc. Japan 27, 16681677.Google Scholar
Ingham D. B. 1983 Steady flow past a rotating cylinder. Computers and Fluids 11, 351366.Google Scholar
Koromilas, C. A. & Telionis D. P. 1980 Unsteady laminar separation: an experimental study. J. Fluid Mech. 97, 347384.Google Scholar
Krhan E. 1955 The laminar boundary layer on a rotating cylinder in cross flow. NAVORD Rep. 4022, Aerobal. Res. Rep. 288, U.S., NOL. Maryland.
Lugt H. J. 1979 The dilemma of defining a vortex. In Recent Development of Theoretical and Experimental Fluid Mechanics, pp. 309321. Springer-Verlag.
Mehta, U. B. & Lavan Z. 1975 Starting vortex, separation bubbles and stall: a numerical study of laminar unsteady flow around an airfoil. J. Fluid Mech. 67, 227256.Google Scholar
Ménard C. 1984 Thèse de 3ème cycle de l'Université de Poitiers.
Moore D. W. 1957 The flow past a rapidly rotating cylinder in a uniform stream. J. Fluid Mech. 2, 541550.Google Scholar
O'Brien V. 1981 Stagnation regions of separation. Phys. Fluids 24, 10051009.Google Scholar
Perry A. E., Chong, M. S. & Tim T. T. 1982 The vortex-shedding process behind two-dimensional bluff bodies. J. Fluid Mech. 116, 7790.Google Scholar
Prandtl, L. & Tietjens O. G. 1934 Applied Hydro- and Aeromechanics (transl. J. P. Den Hartog 1957). Dover.
Rinaldo, A. & Giorgini A. 1983 A mixed discrete Fourier transform-finite difference algorithm for the solution of the Navier-Stokes equations. Rep. no. CE - HSE -83-13. Perdue Univ., West Lafayette, Indiana.
Swanson W. M. 1961 The Magnus effect: a summary of investigation to date. Trans. ASME D: J. Basic Engng 461470.
Taneda S. 1977 Visual study of unsteady separated flows around bodies. Prog. Aero. Sci. 17, 287348.Google Scholar
Taneda S. 1980 Visualization of unsteady flow separation. In Flow visualization II (ed. W. Merzkirch), pp. 253257. Hemisphere.
Ta Phuoc Loc 1975 Etude numerique de l’écoulement d'un fluide visqueux incompressible autour d'un cylindre fixe ou en rotation. Effet Magnus. J. Méc. 14, 109133.Google Scholar
Ta Phuoc Loc 1980 Numerical analysis of unsteady secondary vortices generated by an impulsively started circular cylinder. J. Fluid Mech. 110, 111128.Google Scholar
Townsend P. 1980 A numerical simulation of newtonian and visco-elastic flow past stationary and rotating cylinders. J. Non-Newtonian Fluid Mech. 6, 219243.Google Scholar
Werlé H. 1984 Visualisation hydrodynamique de l’écoulement autour d'un cylindre profilé avec aspiration, maquette de la turbovoile Cousteau-Malavard. La Recherche Aérospatiale 4, 265274.Google Scholar
Wood W. W. 1957 Boundary layers whose streamlines are closed. J. Fluid Mech. 2, 7787.Google Scholar