Published online by Cambridge University Press: 02 January 2013
We study the influence of low-frequency vibration on Marangoni instability in a layer of a binary mixture with the Soret effect. A linear stability analysis is performed numerically for perturbations of a finite wavelength (short-wave perturbations). Competition between long-wave and short-wave modes is found: the former ones are critical at smaller absolute values of the Soret number $\chi $, whereas the latter ones lead to instability at higher $\vert \chi \vert $. In both cases the vibration destabilizes the layer. Two variants of calculations are performed: via Floquet theory (linear asymptotic stability) and taking noise into consideration (empirical criterion). It is found that fluctuations substantially reduce the domains of stability. Further, while studying a limiting case within the empirical criterion, we have found a short-wave instability mode overlooked in former investigations of coupled Rayleigh–Marangoni convection in a layer of pure liquid.