Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-26T08:31:55.736Z Has data issue: false hasContentIssue false

Inertially induced cyclic solutions in thin-film free-surface flows

Published online by Cambridge University Press:  22 August 2014

C. M. Groh
Affiliation:
Department of Applied Mathematics, University of Leeds, Leeds LS2 9JT, UK Department of Radiation Oncology, University of Würzburg, D-97080 Würzburg, Germany
M. A. Kelmanson*
Affiliation:
Department of Applied Mathematics, University of Leeds, Leeds LS2 9JT, UK
*
Email address for correspondence: [email protected]

Abstract

New mechanisms are discovered regarding the effects of inertia in the transient Moffatt–Pukhnachov problem (J. Méc., vol. 187, 1977, pp. 651–673) on the evolution of the free surface of a viscous film coating the exterior of a rotating horizontal cylinder. Assuming two-dimensional evolution of the film thickness (i.e. neglecting variation in the axial direction), a multiple-timescale procedure is used to obtain explicitly parameterized high-order asymptotic approximations of solutions of the spatio-temporal evolution equation. Novel, hitherto-unexplained transitions from stability to instability are observed as inertia is increased. In particular, a critical Reynolds number $\def \xmlpi #1{}\def \mathsfbi #1{\boldsymbol {\mathsf {#1}}}\let \le =\leqslant \let \leq =\leqslant \let \ge =\geqslant \let \geq =\geqslant \def \Pr {\mathit {Pr}}\def \Fr {\mathit {Fr}}\def \Rey {\mathit {Re}}\mathit{Re}_c$ is predicted at which occurs a supercritical pitchfork bifurcation in wave amplitude that is fully explained by the new asymptotic theory. For $\mathit{Re}<\mathit{Re}_c$, free-surface profiles converge algebraically-cum-exponentially to a steady state and, for $\mathit{Re}> \mathit{Re}_c$, stable temporally periodic solutions with leading-order amplitudes proportional to $(\mathit{Re}-\mathit{Re}_c)^{1/2}$ are found, i.e. in the régime in which previous related literature predicts exponentially divergent instability. For $\mathit{Re}=\mathit{Re}_c$, stable solutions are found that decay algebraically to a steady state. A model solution is proposed that not only captures qualitatively the interaction between fundamental and higher-order wave modes but also offers an explanation for the formation of the lobes observed in Moffatt’s original experiments. All asymptotic theory is convincingly corroborated by numerical integrations that are spectrally accurate in space and eighth/ninth-order accurate in time.

Type
Papers
Copyright
© 2014 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ashmore, J., Hosoi, A. E. & Stone, H. A. 2003 The effect of surface tension on rimming flows in a partially filled rotating cylinder. J. Fluid Mech. 479, 6598.Google Scholar
Benilov, E. S. & Lapin, V. N. 2013 Inertial instability of flows on the inside or outside of a rotating cylinder. J. Fluid Mech. 736, 107129.Google Scholar
Benilov, E. S. & O’Brien, S. B. G. 2005 Inertial instability of a liquid film inside a rotating horizontal cylinder. Phys. Fluids 17, 116.Google Scholar
Benjamin, T. B., Pritchard, W. G. & Tavener, S. J.1993 Steady and unsteady flows of a highly viscous liquid inside a rotating horizontal cylinder. Report No. AM 122. Department of Mathematics, Penn State University.Google Scholar
Evans, P. L., Schwarz, L. W. & Roy, R. V. 2004 Steady and unsteady solutions for coating flow on a rotating horizontal cylinder: two-dimensional theoretical and numerical modeling. Phys. Fluids 16, 27422756.Google Scholar
Evans, P. L., Schwarz, L. W. & Roy, R. V. 2005 Three-dimensional solutions for coating flow on a rotating horizontal cylinder: theory and experiment. Phys. Fluids 17, 072102.Google Scholar
Groh, C. M. & Kelmanson, M. A. 2009 Multiple-timescale asymptotic analysis of transient coating flows. Phys. Fluids 21, 091702.Google Scholar
Groh, C. M. & Kelmanson, M. A. 2012 Computer-algebra multiple-timescale method for spatially periodic thin-film viscous-flow problems. Intl J. Numer. Meth. Fluids 68, 14571470.CrossRefGoogle Scholar
Hansen, E. B. & Kelmanson, M. A. 1994 Steady, viscous, free-surface flow on a rotating cylinder. J. Fluid Mech. 272, 91107.CrossRefGoogle Scholar
Hinch, E. J. & Kelmanson, M. A. 2003 On the decay and drift of free-surface perturbations in viscous, thin-film flow exterior to a rotating cylinder. Proc. R. Soc. Lond. A 459, 11931213.Google Scholar
Hinch, E. J., Kelmanson, M. A. & Metcalfe, P. D. 2004 Shock-like free-surface perturbations in low-surface-tension, viscous, thin-film flow exterior to a rotating cylinder. Proc. R. Soc. Lond. A 460, 29752991.Google Scholar
Hosoi, A. E. & Mahadevan, L. 1999 Axial instability of a free-surface front in a partially filled horizontal rotating cylinder. Phys. Fluids 11, 97106.CrossRefGoogle Scholar
Hynes, T. P.1978 The stability of thin flims. DPhil thesis, Churchill College, Cambridge.Google Scholar
Karabut, E. A. 2007 Two régimes of liquid film flow on a rotating cylinder. J. Appl. Mech. Tech. Phys. 48 (1), 5564.Google Scholar
Kelmanson, M. A. 2009a Pseudo-three-timescale approximation of exponentially modulated free-surface waves. J. Fluid Mech. 625, 435443.CrossRefGoogle Scholar
Kelmanson, M. A. 2009b On inertial effects in the Moffatt–Pukhnachov coating-flow problem. J. Fluid Mech. 633, 327353.Google Scholar
Moffatt, H. K. 1977 Behaviour of a viscous film on the outer surface of a rotating cylinder. J. Méc. 187, 651673.Google Scholar
Noakes, C. J., King, J. R. & Riley, D. S. 2006 On the development of rational approximations incorporating inertial effects in coating and rimming flows: a multiple-scales approach. Q. J. Mech. Appl. Maths 59, 163190.CrossRefGoogle Scholar
Peterson, R. C., Jimack, P. K. & Kelmanson, M. A. 2001 On the stability of viscous free-surface flow supported by a rotating cylinder. Proc. R. Soc. Lond. A 457, 14271445.Google Scholar
Pougatch, K. & Frigaard, I. 2011 Thin film flow on the inside surface of a horizontally rotating cylinder: steady state solutions and their stability. Phys. Fluids 23, 022102.Google Scholar
Pukhnachev, V. V. 1977 Motion of a liquid film on the surface of a rotating cylinder in a gravitational field. J. Appl. Mech. Tech. Phys. 18, 344351.Google Scholar
Thorodssen, S. T. & Mahadevan, L. 1997 Experimental study of coating flows in a partially-filled horizontal rotating cylinder. Exp. Fluids 23, 113.Google Scholar
Tu, P. N. V. 1994 Dynamical Systems, 2nd edn. Springer-Verlag.Google Scholar