Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-07T19:43:26.088Z Has data issue: false hasContentIssue false

Inertial instability in rotating and stratified fluids: barotropic vortices

Published online by Cambridge University Press:  04 July 2007

R. C. KLOOSTERZIEL
Affiliation:
1School of Ocean & Earth Science & Technology, University of Hawaii, Honolulu, HI 96822, USA
G. F. CARNEVALE
Affiliation:
Scripps Institution of Oceanography, University of California, San Diego, La Jolla, CA 92093, USA
P. ORLANDI
Affiliation:
Dipartimento di Meccanica e Aeronautica, University of Rome, “La Sapienza,” via Eudossiana 18, 00184 Roma, Italy

Abstract

The unfolding of inertial instability in intially barotropic vortices in a uniformly rotating and stratified fluid is studied through numerical simulations. The vortex dynamics during the instability is examined in detail. We demonstrate that the instability is stabilized via redistribution of angular momentum in a way that produces a new equilibrated barotropic vortex with a stable velocity profile. Based on extrapolations from the results of a series of simulations in which the Reynolds number and strength of stratification are varied, we arrive at a construction based on angular momentum mixing that predicts the infinite-Reynolds-number form of the equilibrated vortex toward which inertial instability drives an unstable vortex. The essential constraint is conservation of total absolute angular momentum. The construction can be used to predict the total energy loss during the equilibration process. It also shows that the equilibration process can result in anticyclones that are more susceptible to horizontal shear instabilities than they were initially, a phenomenon previously observed in laboratory and numerical studies.

Type
Papers
Copyright
Copyright © Cambridge University Press 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Afanasyev, Y. D. & Peltier, W. R. 1998 Three-dimensional instability of anticyclonic flow in a rotating fluid: Laboratory experiments and related theoretical predictions. Phys. Fluids 10, 31943202.CrossRefGoogle Scholar
Billant, P. & Gallaire, F. 2005 Generalized Rayleigh criterion for non-axisymmetric centrifugal instabilities. J. Fluid Mech. 542, 365379.CrossRefGoogle Scholar
Carnevale, G. F., Briscolini, M., Kloosterziel, R. C. & Vallis, G. K. 1997 Three-dimensionally perturbed vortex tubes in a rotating flow. J. Fluid Mech. 341, 127163.Google Scholar
Carnevale, G. F., Briscolini, M. & Orlandi, P. 2001 Buoyancy to inertial range transition in forced stratified turbulence. J. Fluid Mech. 427, 205239.Google Scholar
Carnevale, G. F. & Kloosterziel, R. C. 1994 Emergence and evolution of triangular vortices. J. Fluid Mech. 259, 305331.CrossRefGoogle Scholar
Carton, X. & McWilliams, J. C. 1989 Barotropic and baroclinic instabilities of axisymmetric vortices in quasi-geostrophic model. In Mesoscale/Synoptic Coherent Structures in Geophysical Turbulence (ed. Nihoul, J. C. J. & Jamart, B. M.), pp. 225244. Elsevier.CrossRefGoogle Scholar
Drazin, P. & Reid, W. 1981 Hydrodynamic Stability. Cambridge University Press.Google Scholar
Fjortoft, R. 1950 Application of integral theorems in deriving criteria of stability for laminar flows and for the baroclinic vortex. Geofys. Publ. 17 (6), 552.Google Scholar
Flament, P., Lumpkin, R., Tournadre, J. & Armi, L. 2001 Vortex pairing in an unstable anticyclonic shear flow: discrete subharmonics of one pendulum day. J. Fluid Mech. 409, 401409.Google Scholar
Flierl, G. R. 1988 On the instability of geostrophic vortices. J. Fluid Mech. 197, 349388.CrossRefGoogle Scholar
Gallaire, F. & Chomaz, J.-M. 2003 Three-dimensional instability of isolated vortices. Phys. Fluids 15, 21132126.CrossRefGoogle Scholar
Griffiths, S. D. 2003a The nonlinear evolution of of zonally symmetric equatorial inertial instability. J. Fluid Mech. 474, 245273.CrossRefGoogle Scholar
Griffiths, S. D. 2003b Nonlinear vertical scale selection in equatorial inertial instability. J. Atmos. Sci. 60, 977990.2.0.CO;2>CrossRefGoogle Scholar
Hua, B. L., leGentil, S. Gentil, S. & Orlandi, P. 1997a First transitions in circular Couette flow with axial stratification. Phys. Fluids 9, 365375.Google Scholar
Hua, B. L., Moore, D. W. & LeGentil, S. Gentil, S. 1997b Inertial nonlinear equilibration of equatorial flows. J. Fluid Mech. 331, 345371.CrossRefGoogle Scholar
Jacquin, L. & Pantano, C. 2002 On the persistence of trailing vortices. J. Fluid Mech. 471, 159168.CrossRefGoogle Scholar
Kloosterziel, R. C. 1990 Barotropic vortices in a rotating fluid. PhD thesis, University of Utrecht.Google Scholar
Kloosterziel, R. C. & vanHeijst, G. J. F. Heijst, G. J. F. 1991 An experimental study of unstable barotropic vortices in a rotating fluid. J. Fluid Mech. 223, 124.CrossRefGoogle Scholar
Ooyama, K. 1966 On the stability of the baroclinic circular vortex: a sufficient condition for instability. J. Atmos. Sci. 23, 4353.2.0.CO;2>CrossRefGoogle Scholar
Orlandi, P. 2000 Fluid Flow Phenomena: A Numerical Toolkit. Kluwer.CrossRefGoogle Scholar
Orlandi, P. & Carnevale, G. F. 1999 Evolution of isolated vortices in a rotating fluid of finite depth. J. Fluid Mech. 381, 239269.Google Scholar
Potylitsin, P. G. & Peltier, W. R. 1998 Stratification effects on the stability of columnar vortices on the f-plane. J. Fluid Mech. 355, 4579.CrossRefGoogle Scholar
Potylitsin, P. G. & Peltier, W. R. 2003 On the nonlinear evolution of columnar vortices in a rotating environment. Geophys. Astrophys. Fluid Dyn. 97, 365391.Google Scholar
Rayleigh, Lord 1916 On the dynamics of revolving fluids. Proc. R. Soc. Lond. A 93, 148154.Google Scholar
Sawyer, S. J. 1947 Notes on the theory of tropical cyclones. Q. J. R. Met. Soc. 73, 101126.Google Scholar
Shen, C. Y. & Evans, T. E. 1998 Inertial instability of large Rossby number horizontal shear flows in a thin homogeneous layer. Dyn. Atm. Oceans 26, 185208.CrossRefGoogle Scholar
Smyth, W. D. & McWilliams, J. C. 1998 Instability of an axisymmetric vortex in a stably stratified, rotating environment. Theor. Comp. Fluid Dyn. 11, 305322.Google Scholar
Smyth, W. D. & Peltier, W. R. 1994 Three-dimensionalization of barotropic vortices on the f-plane. J. Fluid Mech. 265, 2564.CrossRefGoogle Scholar
Solberg, H. 1936 Le mouvement d'inertie de l'atmosphere stable et son role dans la theorie des cyclones. Sixth Assembly, Edinburgh. Union Geodesique et Geophysique Internationale, pp. 66–82.Google Scholar
Stone, P. H. 1966 On non-geostrophic stability. J. Atmos. Sci. 23, 390400.2.0.CO;2>CrossRefGoogle Scholar
vanHeijst, G. J. F. Heijst, G. J. F. & Kloosterziel, R. C. 1989 Tripolar vortices in a rotating fluid. Nature 338, 569571.Google Scholar
vanHeijst, G. J. F. Heijst, G. J. F., Kloosterziel, R. C. & Williams, C. W. M. 1991 Laboratory experiments on the tripolar vortex in a rotating fluid. J. Fluid Mech. 225, 301331.Google Scholar
Yanai, M. & Tokiaka, T. 1969 Axially symmetric meridional motions in the baroclinic circular vortex: a numerical experiment. J. Met. Soc. Japan 47 (3), 183197.CrossRefGoogle Scholar