No CrossRef data available.
Published online by Cambridge University Press: 14 August 2023
A present paper generalizes the work of Tyvand & Miloh (J. Fluid Mech., vol. 286, 1995, pp. 67–101) on the problem of the free surface flow generated by a submerged circular cylinder moving impulsively with constant velocity to the case of a cylinder moving with both initial velocity and acceleration. The nonlinear small-time asymptotic solution for the velocity potential, free surface elevation and hydrodynamic pressure force is calculated analytically in bipolar coordinates for a cylinder of arbitrary radius. The analytical solution is obtained to the leading order of nonlinear interaction between initial impulsive velocity and initial impulsive acceleration directed at arbitrary angles. In the special case of the motion with constant acceleration, the complete fourth-order free-surface flow problem is solved and the associated second-order hydrodynamic force is computed. The leading-order contributions to the free surface elevation due to the constant velocity and constant acceleration are compared for finite rectilinear cylinder displacements. The role of constant acceleration consists of two contributions to the leading nonlinear terms, where the amplitude of the first one is 25 % below the case of constant velocity while the amplitude of the other exceeds it by 50 %.
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.