Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-09T12:00:29.796Z Has data issue: false hasContentIssue false

Impulse-driven drop

Published online by Cambridge University Press:  13 May 2020

Hamed K. Habibi
Affiliation:
Departments of Mathematics and Mechanical Engineering, University of Alberta, Edmonton,ABT6G 2G1, Canada
Rouslan Krechetnikov*
Affiliation:
Departments of Mathematics and Mechanical Engineering, University of Alberta, Edmonton,ABT6G 2G1, Canada
*
Email address for correspondence: [email protected]

Abstract

Drop deformation and disintegration regimes have been studied in many contexts ranging from an impact on a solid surface or a liquid layer of varying thickness to a liquid drop suspended in air and hit by a propagating aerodynamic shock wave. As a counterpart, deformation and disintegration of an initially static drop of controlled shape and size sitting on an impulsively driven stiff membrane are explored here experimentally. A significant amount of collected experimental data is used to map the possible drop morphological changes along with the transitions between them. In order to elucidate the effects of impulse intensity, viscosity, surface tension and wetting, we measured the crown height and radius in the drop deformation regimes, as well as the drop detachment and breakup times along with probability density functions of the secondary droplets in the drop disintegration regimes. With the goal to convey the physical mechanisms behind these transient responses, the observations are interpreted with phenomenological models, scalings and estimates highlighting the rich multiscale physics of the impulse-driven drop phenomena.

Type
JFM Papers
Copyright
© The Author(s), 2020. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alekseev, V. B., Zalkind, V. I., Zeigarnik, Yu. A., Marinichev, D. V., Nizovskii, V. L. & Nizovskii, L. V. 2015 On the nature of bimodal drop distribution over sizes under superheated water atomization. High Temp. 53, 214216.CrossRefGoogle Scholar
Association Glycerine Producer’s 1963 Physical Properties of Glycerine and its Solutions. Gulf Publishing Company.Google Scholar
Bang, B. H., Ahn, C. S., Kim, D. Y., Lee, J. G., Kim, H. M., Jeong, Y. T., Al-Deyab, W. S., Yoon, S. S., Yoo, J. H., Yoon, S. S. et al. 2016 Breakup process of cylindrical viscous liquid specimens after a strong explosion in the core. Phys. Fluids 28, 094105.CrossRefGoogle Scholar
Berezin, O. A. & Grib, L. A. 1960 Irregular reflection of a plane shock wave in water from a free surface. Zh. Prikl. Mekh. Tekh. Fiz. 2, 3439.Google Scholar
Billingsley, P. 1995 Probability and Measure. Wiley.Google Scholar
Bowden, F. P. & Field, J. E. 1964 The brittle fracture of solids by liquid impact, by solid impact, and by shock. Proc. R. Soc. Lond. A 282, 331352.Google Scholar
Brennen, C. E. 1995 Cavitation and Bubble Dynamics. Oxford University Press.Google Scholar
Camus, J.-J.1971 A study of high speed liquid flow in impact and its effect on solid surfaces. PhD thesis, Cambridge University.Google Scholar
Caupin, F. 2005 Liquid–vapor interface, cavitation, and the phase diagram of water. Phys. Rev. E 71, 051605.Google ScholarPubMed
Chantelot, P., Clanet, M., Coux, C. & Quéré, D. 2018a Drop trampoline. Europhys. Lett. 124, 24003.CrossRefGoogle Scholar
Chantelot, P., Coux, M., Domino, L., Pype, B., Clanet, C., Eddi, A. & Quéré, D. 2018b Kicked drops. Phys. Rev. Fluids 3, 100503.CrossRefGoogle Scholar
Cohen, R. D. 1991 Shattering of a liquid drop due to impact. Proc. R. Soc. Lond. A 435, 483503.Google Scholar
Culick, F. E. C. 1960 Comments on a ruptured soap film. J. Appl. Phys. 31, 11281129.CrossRefGoogle Scholar
Deegan, R. D., Brunet, P. & Eggers, J. 2008 Complexities of splashing. Nonlinearity 21, C1C11.10.1088/0951-7715/21/1/C01CrossRefGoogle Scholar
Dion, S., Hebert, C. & Brouillette, M. 2009 Comparison of methods for generating shock waves in liquids. In Shock Waves (ed. Hannemann, K. & Seiler, F.), pp. 851856. Springer.10.1007/978-3-540-85181-3_9CrossRefGoogle Scholar
Drazin, P. G. & Reid, W. H. 2004 Hydrodynamic Stability. Cambridge University Press.10.1017/CBO9780511616938CrossRefGoogle Scholar
Duez, C., Ybert, C., Clanet, C. & Bocquet, L. 2007 Making a splash with water repellency. Nat. Phys. 3, 180183.CrossRefGoogle Scholar
Eisenmenger, W. 1962 Elektromagnetische Erzeugung von eben Druckstössen in Flüssigkeiten. Acustica 12, 185202.Google Scholar
Eroglu, H. & Chigier, N. 1991 Initial drop size and velocity distributions for airblast coaxial atomizers. J. Fluids Engng 113, 453459.10.1115/1.2909517CrossRefGoogle Scholar
Field, J. E., Dear, J. P. & Ogren, J. E. 1989 The effects of target compliance on liquid drop impact. J. Appl. Phys. 65, 533540.CrossRefGoogle Scholar
Field, J. E., Lesser, M. B. & Dear, J. P. 1985 Studies of two-dimensional liquid-wedge impact and their relevance to liquid-drop impact problems. Proc. R. Soc. Lond. A 401, 225249.Google Scholar
Frenkel, J. 1955 Kinetic Theory of Liquids. Dover.Google Scholar
Giacomini, A. 1947 Ultrasonic velocity in ethanol-water mixtures. J. Acous. Soc. Am. 19, 701702.CrossRefGoogle Scholar
Gonor, A. L. & Rivkind, V. Y. 1982 Drop dynamics. In Advances in Science and Engineering, Fluid Mechanics, vol. 17, pp. 86159. VINITI.Google Scholar
Habibi, H. & Krechetnikov, R.2015 Shock wave-droplet interaction. Poster P0028 in the Gallery of Fluid Motion at the 68th Annual Meeting, American Physical Society, Division of Fluid Dynamics, Boston, Massachusetts, 22–24 November.Google Scholar
Hall, M. J. 1970 Use of the stain method in determining the drop-size distributions of coarse liquid sprays. Trans. ASAE 41, 3337.10.13031/2013.38528CrossRefGoogle Scholar
Han, A., Lu, W., Punyamurtula, V. K., Chen, X., Surani, F. B., Kim, T. & Qiao, Y. 2008 Effective viscosity of glycerin in a nanoporous silica gel. J. Appl. Phys. 104, 124908.10.1063/1.3020535CrossRefGoogle Scholar
Harari, R. & Sher, E. 1998 Bimodal drop size distribution behavior in plain-jet airblast atomizer sprays. Atomiz. Sprays 8, 349362.CrossRefGoogle Scholar
Howland, C. J., Antkowiak, A., Rafael Castrejón-Pita, J., Howison, S. D., Oliver, J. M., Style, R. W. & Castrejón-Pita, A. A. 2016 It’s harder to splash on soft solids. Phys. Rev. Lett. 117, 184502.CrossRefGoogle ScholarPubMed
Hsiang, L.-P. & Faeth, G. M. 1992 Near-limit drop deformation and secondary breakup. Intl J. Multiphase Flow 18, 635652.CrossRefGoogle Scholar
Joseph, D. D., Belanger, J. & Beavers, G. S. 1999 Breakup of a liquid suddenly exposed to a high-speed airstream. Intl J. Multiphase Flow 25, 12631303.CrossRefGoogle Scholar
Joseph, D. D., Huang, A. & Candler, G. V. 1996 Vaporization of a liquid drop suddenly exposed to a high-speed airstream. J. Fluid Mech. 318, 223236.CrossRefGoogle Scholar
Josserand, C. & Thoroddsen, S. T. 2016 Drop impact on a solid surface. Annu. Rev. Fluid Mech. 48, 365391.CrossRefGoogle Scholar
Josserand, C. & Zaleski, S. 2003 Droplet splashing on a thin liquid film. Phys. Fluids 15, 16501657.CrossRefGoogle Scholar
Joukowsky, N. E. 1899 On hydraulic jump in water pipes. Bull. Polytech. Soc. 5, 136.Google Scholar
von Karman, T. H.1929 The impact on seaplane floats during landing. Tech. Rep. 321. NACA.Google Scholar
Kedrinskii, V. K. 1993 Nonlinear problems of cavitative disintegration of liquid at explosive loading. Zh. Prikl. Mekh. Tekh. Fiz. 34, 7491.Google Scholar
Kedrinskii, V. K., Besov, A. S. & Gutnik, I. E. 1997 Inversion of a two-phase state of a liquid under a pulse loading. Dokl. RAN 352, 477479.Google Scholar
Kedrinskii, V. K. & Chernobaev, N. N. 1992 One-dimensional projection of a liquid shell by an explosive charge. J. Appl. Mech. Tech. Phys. 33, 851856.CrossRefGoogle Scholar
Kedrinskii, V. K., Makarov, A. I., van Doorn, E. & Borel, H. 2005 Research of viscosity effect on the dynamics of the motion of liquid drop with its shock-wave load. In XVI Session of the Russian Acoustical Society, pp. 1821. Russian Acoustical Society.Google Scholar
Kinsler, L. E., Frey, A. R., Coppens, A. B. & Sanders, J. V. 1999 Fundamentals of Acoustics. Wiley.Google Scholar
Kolmogorov, A. N. 1941 On the log-normal distribution of particles sizes during break-up process. Dokl. Akad. Nauk. SSSR XXXI, 99101.Google Scholar
Komabayasi, M., Gonda, T. & Isono, K. 1964 Life time of water drops before breaking and size distribution of fragment droplets. J. Met. Soc. Japan 42, 330340.CrossRefGoogle Scholar
Konenkov, Yu. K. 1975 Interaction of a liquid layer with a membrane during the initial stage of impact. Fluid Dyn. 10, 837841.CrossRefGoogle Scholar
Krechetnikov, R. 2009 Rayleigh–Taylor and Richtmyer–Meshkov instabilities of flat and curved interfaces. J. Fluid Mech. 625, 387410.CrossRefGoogle Scholar
Krechetnikov, R. & Homsy, G. M. 2009 Crown-forming instability phenomena in the drop splash problem. J. Colloid Interface Sci. 331, 555559.CrossRefGoogle ScholarPubMed
Lamb, H. 1932 Hydrodynamics. Dover.Google Scholar
Landau, L. D. & Lifshitz, E. M. 1986 Theory of Elasticity. Pergamon Press.Google Scholar
Landau, L. D. & Lifshitz, E. M. 1987 Fluid Mechanics. Pergamon Press.Google Scholar
Lehr, J. M., Baum, C. E., Prather, W. D. & Torres, R. J. 1999 Fundamental physical considerations for ultrafast spark gap switching. In Ultra-Wideband Short Pulse Electromagnetics 4 (ed. Heyman, E., Mandelbaum, B. & Shiloh, J.), pp. 1120. Plenum Press.Google Scholar
Lenard, P. 1904 Uber regen. Meteorol. Z. 21, 248262.Google Scholar
Lesser, M. B. 1981 Analytic solutions of liquid-drop impact problems. Proc. R. Soc. Lond. A 377, 289308.Google Scholar
Lide, D. R. 2006-2007 Handbook of Chemistry and Physics. Taylor & Francis.Google Scholar
Liebermann, L. N. 1949 The second viscosity of liquids. Phys. Rev. 75, 14151422.CrossRefGoogle Scholar
Liu, J., Vu, H., Yoon, S. S. & Jepsen, R. A. 2010 Splashing phenomena during liquid droplet impact. Atomiz. Sprays 20, 297310.10.1615/AtomizSpr.v20.i4.30CrossRefGoogle Scholar
Matheson, A. J. 1971 Molecular Acoustics. Wiley.Google Scholar
Mayer, H. C. & Krechetnikov, R. 2018 Flat plate impact on water. J. Fluid Mech. 850, 10661116.10.1017/jfm.2018.461CrossRefGoogle Scholar
Mortimer, B. J. P. & Skews, B. W. 1996 An electromagnetic liquid shock wave generator for the production of a pulsed water jet. J. Acoust. Soc. Am. 100, 35483553.10.1121/1.417331CrossRefGoogle Scholar
Mundo, C., Sommerfeld, M. & Tropea, C. 1995 Droplet-wall collisions: experimental studies of the deformation and breakup process. Intl J. Multiphase Flow 21, 151173.CrossRefGoogle Scholar
Peregrine, D. H. 1981 The fascination of fluid mechanics. J. Fluid Mech. 106, 5980.10.1017/S0022112081001523CrossRefGoogle Scholar
Pilch, M. & Erdman, C. A. 1987 Use of break-up time data and velocity history data to predict the maximum size of stable fragments for acceleration-induced break-up of a liquid drop. Intl J. Multiphase Flow 13, 741757.CrossRefGoogle Scholar
Plesset, M. S. & Whipple, C. G. 1974 Viscous effects in Rayleigh–Taylor instability. Phys. Fluids 17, 17.CrossRefGoogle Scholar
Pryor, A. W. & Roscoe, R. 1954 Velocity and absorption of sound in aqueous sugar solutions. Proc. Phys. Soc. B 67, 7081.10.1088/0370-1301/67/1/310CrossRefGoogle Scholar
Renardy, Y., Popinet, S., Duchemin, L., Renardy, M., Zaleski, S., Josserand, C., Drumright-Clarke, M. A., Richard, D., Clanet, C. & Quéré, D. 2003 Pyramidal and toroidal water drops after impact on a solid surface. J. Fluid Mech. 484, 6983.CrossRefGoogle Scholar
Rioboo, R., Tropea, C. & Marengo, M. 2001 Outcomes from a drop impact on solid surfaces. Atomiz. Sprays 11, 155165.10.1615/AtomizSpr.v11.i2.40CrossRefGoogle Scholar
Rodnikova, M. N. 2007 A new approach to the mechanism of solvophobic interactions. J. Mol. Liquids 136, 211213.CrossRefGoogle Scholar
Roi, N. A. 1970 Pulsed electrodynamic radiators. Sov. Phys. Acoust. 16, 94100.Google Scholar
Roux, D. C. D. & Cooper-White, J. J. 2004 Dynamics of water spreading on a glass surface. J. Colloid Interface Sci. 277, 424436.CrossRefGoogle ScholarPubMed
Shaughnessy, E. J., Katz, I. M. & Schaffer, J. P. 2005 Introduction to Fluid Mechanics. Oxford University Press.Google Scholar
Simpkins, P. G. & Bales, E. L. 1972 Water-drop response to sudden accelerations. J. Fluid Mech. 55, 629639.CrossRefGoogle Scholar
Stebnovskii, S. V. & Chernobaev, N. N. 1987 Influence of the dynamics of loading of a liquid volume on the mechanism of its failure. Zh. Prikl. Mekh. Tekh. Fiz. 5, 134138.Google Scholar
Stow, C. D. & Hadfield, M. G. 1981 An experimental investigation of fluid flow resultin from the impact of a water drop with an unyielding dry surface. Proc. R. Soc. Lond. A 373, 419441.Google Scholar
Strasberg, M. 1956 Undissolved air cavities as cavitation nuclei. In Cavitation in Hydrodynamics, Proc. Sympos. Nat. Phys. Lab., pp. 113. Her Majesty’s Stationary Office, London.Google Scholar
Taylor, G. I. 1949 The shape and acceleration of a drop in a high-speed air stream. In The Scientific Papers of G. I. Taylor (ed. Batchelor, G. K.), pp. 457464. Cambridge University Press.Google Scholar
Taylor, G. I. 1959 The dynamics of thin sheets of fluid. II. Waves on fluid sheets. Proc. R. Soc. Lond. A 253, 296312.Google Scholar
Theofanous, T. G. & Li, G. J. 2008 On the physics of aerobreakup. Phys. Fluids 20, 052103.CrossRefGoogle Scholar
Thoroddsen, S. T. 2002 The ejecta sheet generated by the impact of a drop. J. Fluid Mech. 451, 373381.CrossRefGoogle Scholar
Wang, A.-B. & Chen, C.-C. 2000 Splashing impact of a single drop onto very thin liquid films. Phys. Fluids 12, 21552158.CrossRefGoogle Scholar
Williams, P. F. & Peterkin, F. E. 1989 Triggering in trigatron spark gaps: a fundamental study. J. Appl. Phys. 66, 4163.CrossRefGoogle Scholar
Wilson, D. A., Hoyt, J. W. & McKune, J. W. 1975 Measurement of tensile strength of liquid by explosion technique. Nature 253, 723725.CrossRefGoogle Scholar
Worthington, A. M. 1877a On the forms assumed by drops of liquids falling vertically on a horizontal plate. Proc. R. Soc. Lond. A 25, 261272.Google Scholar
Worthington, A. M. 1877b A second paper on the forms assumed by drops of liquids falling vertically on a horizontal plate. Proc. R. Soc. Lond. A 25, 498503.Google Scholar
Worthington, A. M. 1895 The Splash of a Drop. Society for Promoting Christian Knowledge.Google Scholar
Yakimov, Y. L. 1973 Influence of atmosphere at falling of bodies on water. Izv. Ross. Akad. Nauk Mekh. Zhidk. Gaza 5, 36.Google Scholar
Yarin, A. L. 2006 Drop impact dynamics: splashing, spreading, receding, bouncing…. Annu. Rev. Fluid Mech. 38, 159192.CrossRefGoogle Scholar
Yarin, A. L. & Weiss, D. A. 1995 Impact of drops on solid surfaces: self-similar capillary waves, and splashing as a new type of kinematic discontinuity. J. Fluid Mech. 283, 141173.CrossRefGoogle Scholar