Hostname: page-component-586b7cd67f-vdxz6 Total loading time: 0 Render date: 2024-11-26T12:35:55.310Z Has data issue: false hasContentIssue false

Impact of polydispersity and confinement on diffusion in hydrodynamically interacting colloidal suspensions

Published online by Cambridge University Press:  01 September 2021

Emma Gonzalez
Affiliation:
Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA
Christian Aponte-Rivera
Affiliation:
Department of Chemical Engineering, Cornell University, Ithaca, NY 14850, USA
Roseanna N. Zia*
Affiliation:
Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA
*
Email address for correspondence: [email protected]

Abstract

We present a computational study of the equilibrium dynamics of a polydisperse hard-sphere colloidal dispersion confined in a spherical cavity. We account for many-body hydrodynamic and lubrication interactions between particles and with the confining cavity utilizing our confined Stokesian dynamics model, expanded here for size polydispersity. We find that, even though the tendency of polydispersity to homogenize structure in a suspension is still present in confinement, strong correlations induced by the cavity resist homogenization. Although seemingly opposite, these two effects have a common driver, which is to maximize configurational entropy of particles in the cavity interior. These structural effects couple with the hydrodynamics to change the particle dynamics: polydispersity weakens lubrication effects near the cavity wall, allowing small (large) particles to diffuse faster (slower) than in a monodisperse suspension. As a small (large) particle gets farther from the wall, polydispersity weakens many-body hydrodynamic couplings, driving diffusivity up (down). While the local cage dynamics dominates short-time self-diffusion, long-time dynamics is also affected. In the concentrated regime, polydispersity and confinement combine to induce radial de-mixing into size-segregated populations. The cavity becomes the most influential ‘nearest neighbour’, setting the length scale of and dynamics within these radial domains. This intermediate length-scale caging makes the angular dynamics insensitive to polydispersity but leads to radial long-time mean-square displacement that changes qualitatively with volume composition. These results hold promise for explaining colloidal-scale physics implicated in the functioning of biological cells, and the engineering of non-living confined colloids where size de-mixing could be useful in the design of encapsulated micro-reactors and therapeutic vesicles.

Type
JFM Papers
Copyright
© The Author(s), 2021. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Allen, E. & Uhlherr, P.H.T. 1989 Nonhomogeneous sedimentation in viscoelastic fluids. J. Rheol. 33 (4), 627638.CrossRefGoogle Scholar
Ando, T. & Skolnick, J. 2010 Crowding and hydrodynamic interactions likely dominate in vivo macromolecular motion. Proc. Natl Acad. Sci. 107 (43), 1845718462.CrossRefGoogle ScholarPubMed
Aponte-Rivera, C. 2017 Spherically confined colloidal suspensions of hydrodynamically interacting particles: a model for intracellular transport. PhD thesis, Cornell University, Ithaca, NY.Google Scholar
Aponte-Rivera, C., Su, Y. & Zia, R.N. 2018 Equilibrium structure and diffusion in concentrated hydrodynamically interacting suspensions confined by a spherical cavity. J. Fluid Mech. 836, 413450.CrossRefGoogle Scholar
Aponte-Rivera, C. & Zia, R.N. 2016 Simulation of hydrodynamically interacting particles confined by a spherical cavity. Phys. Rev. Fluids 1 (2), 023301.CrossRefGoogle Scholar
Banchio, A.J. & Brady, J.F. 2003 Accelerated Stokesian dynamics: Brownian motion. J. Chem. Phys. 118 (22), 1032310332.CrossRefGoogle Scholar
Bansal, L., Basu, S. & Chakraborty, S. 2017 Confinement suppresses instabilities in particle-laden droplets. Sci. Rep. 7 (1), 18.CrossRefGoogle ScholarPubMed
Batchelor, G.K. 1970 Slender-body theory for particles of arbitrary cross-section in Stokes flow. J. Fluid Mech. 44 (3), 419440.CrossRefGoogle Scholar
Batchelor, G.K. 1976 Brownian diffusion of particles with hydrodynamic interaction. J. Fluid Mech. 74, 129.CrossRefGoogle Scholar
Batchelor, G.K. 1983 Diffusion in a dilute polydisperse system of interacting spheres. J. Fluid Mech. 131, 155175.CrossRefGoogle Scholar
Batchelor, G.K. & Green, J.T. 1972 The determination of the bulk stress in a suspension of spherical particles to order C2. J. Fluid Mech. 56 (3), 401427.CrossRefGoogle Scholar
Bossis, G. & Brady, J.F. 1984 Dynamic simulation of sheared suspensions. I. General method. J. Chem. Phys. 80 (10), 51415154.CrossRefGoogle Scholar
Bossis, G. & Brady, J.F. 1989 The rheology of Brownian suspensions. J. Chem. Phys. 91 (3), 18661874.CrossRefGoogle Scholar
Brady, J.F. 1994 The long-time self-diffusivity in concentrated colloidal dispersions. J. Fluid Mech. 272, 109134.CrossRefGoogle Scholar
Brambilla, G., El Masri, D., Pierno, M., Berthier, L., Cipelletti, L., Petekidis, G. & Schofield, A.B. 2009 Probing the equilibrium dynamics of colloidal hard spheres above the mode-coupling glass transition. Phys. Rev. Lett. 102, 085703.CrossRefGoogle ScholarPubMed
Brenner, H. 1963 The Stokes resistance of an arbitrary particle. Chem. Engng Sci. 18 (1), 125.CrossRefGoogle Scholar
Brenner, H. 1964 a The Stokes resistance of an arbitrary particle-II. Chem. Engng Sci. 19 (9), 599629.CrossRefGoogle Scholar
Brenner, H. 1964 b The Stokes resistance of an arbitrary particle-III. Chem. Engng Sci. 19 (9), 631651.CrossRefGoogle Scholar
Brenner, H. & O'Neill, M.E. 1972 On the Stokes resistance of multiparticle systems in a linear shear field. Chem. Engng Sci. 27 (7), 14211439.CrossRefGoogle Scholar
Chenouard, N., et al. 2014 Objective comparison of particle tracking methods. Nat. Methods 11 (3), 281289.CrossRefGoogle ScholarPubMed
Chong, J.S., Christiansen, E.B. & Baer, A.D. 1971 Rheology of concentrated suspensions. J. Appl. Polym. Sci. 15 (8), 20072021.CrossRefGoogle Scholar
Chow, E. & Skolnick, J. 2015 Effects of confinement on models of intracellular macromolecular dynamics. Proc. Natl Acad. Sci. 112 (48), 1484614851.CrossRefGoogle ScholarPubMed
Daugan, S., Talini, L., Herzhaft, B., Peysson, Y. & Allain, C. 2004 Sedimentation of suspensions in shear-thinning fluids. Oil Gas Sci. Technol. 59 (1), 7180.CrossRefGoogle Scholar
Davis, R.H. & Hill, N.A. 1992 Hydrodynamic diffusion of a sphere sedimenting through a dilute suspension of neutrally buoyant spheres. J. Fluid Mech. 236 (513), 513533.CrossRefGoogle Scholar
Desmond, K.W. & Weeks, E.R. 2009 Random close packing of disks and spheres in confined geometries. Phys. Rev. E 80 (5), 111.CrossRefGoogle ScholarPubMed
Durlofsky, L., Brady, J.F. & Bossis, G. 1987 Dynamic simulation of hydrodynamically interacting particles. J. Fluid Mech. 180 (1987), 2149.CrossRefGoogle Scholar
Einstein, A. 1906 On the theory of the Brownian movement. Ann. Phys. 322, 549560.CrossRefGoogle Scholar
Ermak, D.L. & McCammon, J.A. 1978 Brownian dynamics with hydrodynamic interactions. J. Chem. Phys. 69 (4), 13521360.CrossRefGoogle Scholar
Farr, R.S. & Groot, R.D. 2009 Close packing density of polydisperse hard spheres. J. Chem. Phys. 131 (24), 244104.CrossRefGoogle ScholarPubMed
Faxén, H. 1922 Der Widerstand gegen die Bewegung einer starren Kugel in einer zähen Flüssigkeit, die zwischen zwei parallelen ebenen Wänden eingeschlossen ist. Ann. Phys. 373 (10), 89119.CrossRefGoogle Scholar
Fluitt, A., Pienaar, E. & Viljoen, H. 2007 Ribosome kinetics and aa-tRNA competition determine rate and fidelity of peptide synthesis. Comput. Biol. Chem. 31 (5–6), 335346.CrossRefGoogle ScholarPubMed
Galliker, P., Schneider, J., Eghlidi, H., Kress, S., Sandoghdar, V. & Poulikakos, D. 2012 Direct printing of nanostructures by electrostatic autofocussing of ink nanodroplets. Nat. Commun. 3, 890.CrossRefGoogle ScholarPubMed
Gilet, T. & Bourouiba, L. 2014 Rain-induced ejection of pathogens from leaves: revisiting the hypothesis of splash-on-film using high-speed visualization. Integr. Comp. Biol. 54 (6), 974984.CrossRefGoogle ScholarPubMed
Grenha, A., Remu nán-López, C., Carvalho, E.L.S. & Seijo, B. 2008 Microspheres containing lipid/chitosan nanoparticles complexes for pulmonary delivery of therapeutic proteins. Eur. J. Pharm. Biopharm. 69 (1), 8393.CrossRefGoogle ScholarPubMed
Happel, J. & Brenner, H. 1983 Low Reynolds Number Hydrodynamics, 2nd edn. Martinus Nijhoff.Google Scholar
Jeffrey, D.J. 1992 The calculation of the low Reynolds number resistance functions for two unequal spheres. Phys. Fluids A 4 (1), 1629.CrossRefGoogle Scholar
Jeffrey, D.J. & Onishi, Y. 1984 Calculation of the resistance and mobility functions for two unequal rigid spheres in low-Reynolds-number flow. J. Fluid Mech. 139, 261290.CrossRefGoogle Scholar
Jones, R.B. 2009 Dynamics of a colloid inside a spherical cavity. In Theoretical Methods for Micro Scale Viscous Flows (ed. A. Feuillebois and F. Sellier), chap. 4, pp. 61–104. Transworld Research Network.Google Scholar
Kim, S. & Karrila, S.J. 1991 Microhydrodynamics: Principles and Selected Applications. Dover.Google Scholar
Kim, J., Nam, S.H., Lim, D.K. & Suh, Y.D. 2019 SERS-based particle tracking and molecular imaging in live cells: toward the monitoring of intracellular dynamics. Nanoscale 11 (45), 2172421727.CrossRefGoogle ScholarPubMed
Klumpp, S., Scott, M., Pedersen, S. & Hwa, T. 2013 Molecular crowding limits translation and cell growth. Proc. Natl Acad. Sci. 110 (42), 1675416759.CrossRefGoogle ScholarPubMed
Kovari, D.T., Dunlap, D., Weeks, E.R. & Finzi, L. 2019 Model-free 3D localization with precision estimates for brightfield-imaged particles. Opt. Express 27 (21), 29875.CrossRefGoogle ScholarPubMed
Ladyzhenskaya, O.A. 1963 The Mathematical Theory of Viscous Incompressible Flow. Gordon and Breach.Google Scholar
Li, J., Jiang, X., Singh, A., Heinonen, O.G., Hernández-Ortiz, J.P. & de Pablo, J.J. 2020 Structure and dynamics of hydrodynamically interacting finite-size Brownian particles in a spherical cavity: spheres and cylinders. J. Chem. Phys. 152 (20), 204109.CrossRefGoogle Scholar
Ma, Y., Wang, X., Liu, H., Wei, L. & Xiao, L. 2019 Recent advances in optical microscopic methods for single-particle tracking in biological samples. Anal. Bioanal. Chem. 411 (19), 44454463.CrossRefGoogle ScholarPubMed
Maheshwari, A.J., Gonzalez, E., Sunol, A.M., Endy, D. & Zia, R.N. 2021 Stoichiometric crowding can explain the acceleration of translation elongation: chemical reactions coupled with physical transport enable protein synthesis. Cell (submitted).Google Scholar
Maheshwari, A.J., Sunol, A.M., Gonzalez, E., Endy, D. & Zia, R.N. 2019 Colloidal hydrodynamics of biological cells: a frontier spanning two fields. Phys. Rev. Fluids 4 (11), 110506.CrossRefGoogle Scholar
Mattheyses, A.L., Simon, S.M. & Rappoport, J.Z. 2010 Imaging with total internal reflection fluorescence microscopy for the cell biologist. J. Cell Sci. 123 (21), 36213628.CrossRefGoogle ScholarPubMed
McGuffee, S.R. & Elcock, A.H. 2010 Diffusion, crowding & protein stability in a dynamic molecular model of the bacterial cytoplasm. PLoS Comput. Biol. 6 (3), e1000694.CrossRefGoogle Scholar
Miltiadou-Fezans, A., Kalagri, A., Kakkinou, S., Ziagou, A., Delinikolas, N., Zarogianni, E. & Chorafa, E. 2008 Methodology for in situ application of hydraulic grouts on historic masonry structures. The case of the Katholikon of Dafni Monastery. In Structural Analysis of Historic Construction (ed. D. D'Ayala & E. Fodde), vol. 2, pp. 1025–1033. CRC.CrossRefGoogle Scholar
Németh, Z.T. & Löwen, H. 1999 Freezing and glass transition of hard spheres in cavities. Phys. Rev. E 59 (6), 68246829.CrossRefGoogle ScholarPubMed
Oseen, C.W. 1927 Neuere Methoden und Ergebnisse in der Hydrodynamik. Akademische Verlagsgesellschaft m.b.h.Google Scholar
Parry, B.R., Surovtsev, I.V., Cabeen, M.T., O'Hern, C.S., Dufresne, E.R. & Jacobs-Wagner, C. 2014 The bacterial cytoplasm has glass-like properties and is fluidized by metabolic activity. Cell 156 (1–2), 183194.CrossRefGoogle ScholarPubMed
Phillips, R.J., Brady, J.F. & Bossis, G. 1988 Hydrodynamic transport properties of hard-sphere dispersions. I. Suspensions of freely mobile particles. Phys. Fluids 31 (12), 3462.CrossRefGoogle Scholar
Poslinski, A.J., Ryan, M.E., Gupta, R.K., Seshadri, S.G. & Frechette, F.J. 1988 Rheological behavior of filled polymeric systems. II. The effect of a bimodal size distribution of particulates. J. Rheol. 32 (8), 751771.CrossRefGoogle Scholar
Pusey, P.N. & van Megen, W. 1986 Phase behaviour of concentrated suspensions of nearly colloidal spheres. Nature 320, 24.CrossRefGoogle Scholar
Qi, Q.M. & Shaqfeh, E.S.G. 2018 Time-dependent particle migration and margination in the pressure-driven channel flow of blood. Phys. Rev. Fluids 3 (3), 118.CrossRefGoogle Scholar
Rallison, J.M. & Hinch, E.J. 1986 The effect of particle interactions on dynamic light scattering from a dilute suspension. J. Fluid Mech. 167, 131168.CrossRefGoogle Scholar
Rodriguez, B.E., Kaler, E.W. & Wolfe, M.S. 1992 Binary mixtures of monodisperse latex dispersions. 2. Viscosity. Langmuir 8 (10), 23822389.CrossRefGoogle Scholar
Russel, W.B. & Glendinning, A.B. 1981 The effective diffusion coefficient detected by dynamic light scattering. J. Chem. Phys. 74 (2), 948952.CrossRefGoogle Scholar
Santiso, E. & M’uller, E.A. 2002 Dense packing of binary and polydisperse hard spheres. Mol. Phys. 100 (15), 24612469.CrossRefGoogle Scholar
Schrack, L., Petersen, C.F., Jung, G., Caraglio, M. & Franosch, T. 2020 Dynamic properties of quasi-confined colloidal hard-sphere liquids near the glass transition. J. Stat. Mech. Theory Exp. 093301.CrossRefGoogle Scholar
Semwogerere, D. & Weeks, E.R. 2008 Shear-induced particle migration in binary colloidal suspensions. Phys. Fluids 20 (4), 043306.CrossRefGoogle Scholar
Sierou, A. & Brady, J.F. 2001 Accelerated Stokesian dynamics simulations. J. Fluid Mech. 448, 115146.CrossRefGoogle Scholar
Smith, W.R., Henderson, D.J., Leonard, P.J., Barker, J.A. & Grundke, E.W. 2008 Fortran codes for the correlation functions of hard sphere fluids. Mol. Phys. 106 (1), 37.CrossRefGoogle Scholar
Sun, W., Gu, Y., Wang, G. & Fang, N. 2012 Dual-modality single particle orientation and rotational tracking of intracellular transport of nanocargos. Anal. Chem. 84 (2), 11341138.CrossRefGoogle ScholarPubMed
Van Beurten, P. & Vrij, A. 1981 Polydispersity effects in the small-angle scattering of concentrated solutions of colloidal spheres. J. Chem. Phys. 74 (5), 27442748.CrossRefGoogle Scholar
Van Megen, W. & Underwood, S.M. 1994 Glass transition in colloidal hard spheres: measurement and mode-coupling-theory analysis of the coherent intermediate scattering function. Phys. Rev. E 49 (5), 42064220.CrossRefGoogle ScholarPubMed
Wang, M. & Brady, J.F. 2015 Short-time transport properties of bidisperse suspensions and porous media: a Stokesian dynamics study. J. Chem. Phys. 142 (9), 094901.CrossRefGoogle ScholarPubMed
Wang, M. & Brady, J.F. 2016 Spectral Ewald acceleration of Stokesian dynamics for polydisperse suspensions. J. Comput. Phys. 306, 443477.CrossRefGoogle Scholar
Wilhelm, C., Lavialle, F., Péchoux, C., Tatischeff, I. & Gazeau, F. 2008 Intracellular trafficking of magnetic nanoparticles to design multifunctional biovesicles. Small 4 (5), 577582.CrossRefGoogle ScholarPubMed
Willets, K.A., Wilson, A.J., Sundaresan, V. & Joshi, P.B. 2017 Super-resolution imaging and plasmonics. Chem. Rev. 117 (11), 75387582.CrossRefGoogle ScholarPubMed
Xiao, L., Wei, L., Cheng, X., He, Y. & Yeung, E.S. 2011 Noise-free dual-wavelength difference imaging of plasmonic resonant nanoparticles in living cells. Anal. Chem. 83 (19), 73407347.CrossRefGoogle ScholarPubMed
Zaccarelli, E., Liddle, S.M. & Poon, W.C.K. 2015 On polydispersity and the hard sphere glass transition. Soft Matt. 11 (2), 324330.CrossRefGoogle ScholarPubMed
Zia, R.N., Swan, J.W. & Su, Y. 2015 Pair mobility functions for rigid spheres in concentrated colloidal dispersions: force, torque, translation, and rotation. J. Chem. Phys. 143 (22), 224901.CrossRefGoogle ScholarPubMed
Supplementary material: File

Gonzalez et al. supplementary material

Gonzalez et al. supplementary material

Download Gonzalez et al. supplementary material(File)
File 643.5 KB