Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-28T02:26:49.479Z Has data issue: false hasContentIssue false

The impact of chemical modelling on turbulent premixed flame acoustics

Published online by Cambridge University Press:  08 March 2021

D. Brouzet*
Affiliation:
Department of Mechanical Engineering, University of Melbourne, Parkville, VIC3010, Australia
M. Talei
Affiliation:
Department of Mechanical Engineering, University of Melbourne, Parkville, VIC3010, Australia
M.J. Brear
Affiliation:
Department of Mechanical Engineering, University of Melbourne, Parkville, VIC3010, Australia
B. Cuenot
Affiliation:
CERFACS, 42 Avenue Gaspard Coriolis, Toulouse Cedex 131057, France
*
Email address for correspondence: [email protected]

Abstract

Direct numerical simulations are used to study the impact of chemical modelling on the flame dynamics and the sound generated by three-dimensional, turbulent, premixed methane/air jet flames. The semi-global BFER mechanism from Franzelli et al. (Combust. Flame, vol. 159, issue 2, 2012, pp. 621–637) and the more complex skeletal COFFEE mechanism from Coffee (Combust. Flame, vol. 55, issue 2, 1984, pp. 161–170) are considered. A more wrinkled flame is observed at downstream locations when using the COFFEE mechanism, demonstrating stronger flame/turbulence interaction. This flame also has a significantly lower acoustic power even though it features more acoustic output at high frequencies. The former is shown to arise from lower fluctuations of the heat release rate, whilst the latter is caused by the COFFEE mechanism creating more wrinkled flame surfaces. These results suggest that the accurate simulation of the noise emitted by turbulent premixed flames requires a chemical mechanism that ensures two main features: the heat release rate profile is important for modelling the overall sound amplitude and low frequency acoustics, whilst the flame/turbulence interaction impacts the higher frequency sound.

Type
JFM Papers
Copyright
© The Author(s), 2021. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Abugov, D.I. & Obrezkov, O.I. 1978 Acoustic noise in turbulent flames. Combust. Explos. Shock Waves 14 (5), 606612.CrossRefGoogle Scholar
Baum, M., Poinsot, T., Haworth, D. & Darabiha, N. 1994 Direct numerical simulation of H2/O2/N2 flames with complex chemistry in two-dimensional turbulent flows. J. Fluid Mech. 281, 132.CrossRefGoogle Scholar
Baum, M., Poinsot, T. & Thevenin, D. 1995 Accurate boundary conditions for multicomponent reactive flows. J. Comput. Phys. 116 (2), 247261.CrossRefGoogle Scholar
Belliard, A. 1997 Etude expérimentale de l’émission sonore des flammes turbulentes. PhD thesis, Université de Provence-Aix-Marseille I.Google Scholar
Bogey, C., Bailly, C. & Juve, D. 2000 Numerical simulation of sound generated by vortex pairing in a mixing layer. AIAA J. 38 (12), 22102218.CrossRefGoogle Scholar
Brouzet, D. 2019 Investigation of direct combustion noise in turbulent premixed jet flames using direct numerical simulations. PhD thesis, University of Melbourne.Google Scholar
Brouzet, D., Dou, X., Talei, M., Gordon, R.L. & Brear, M.J. 2018 Sound generation by planar, CH4/air flame annihilation with several chemical mechanisms. In Proceedings of the 21st Australasian Fluid Mechanics Conference (ed. T.C.W. Lau & R.M. Kelso) Australasian Fluid Mechanics Society.Google Scholar
Brouzet, D., Haghiri, A., Talei, M. & Brear, M.J. 2019 Annihilation events topology and their generated sound in turbulent premixed flames. Combust. Flame 204, 268277.CrossRefGoogle Scholar
Burnley, V.S. & Culick, F.E.C. 2000 Influence of random excitations on acoustic instabilities in combustion chambers. AIAA J. 38 (8), 14031410.CrossRefGoogle Scholar
Candel, S. 2002 Combustion dynamics and control: progress and challenges. Proc. Combust. Inst. 29 (1), 128.CrossRefGoogle Scholar
Candel, S., Durox, D., Ducruix, S., Birbaud, A.L., Noiray, N. & Schuller, T. 2009 Flame dynamics and combustion noise: progress and challenges. Intl J. Aeroacoust. 8 (1), 156.CrossRefGoogle Scholar
Candel, S. & Poinsot, T. 1990 Flame stretch and the balance equation for the flame area. Combust. Sci. Technol. 70 (1–3), 115.CrossRefGoogle Scholar
Chakraborty, N. & Swaminathan, N. 2007 Influence of the Damköhler number on turbulence-scalar interaction in premixed flames. I. Physical insight. Phys. Fluids 19 (4), 045103.CrossRefGoogle Scholar
Cheneau, B., Vie, A. & Ducruix, S. 2015 Large Eddy Simulation of a liquid fuel swirl burner: flame characterization for pilot and multipoint injection strategies. In Proceedings of the ASME Turbo Expo 2015: Turbine Technical Conference and Exposition. ASME.CrossRefGoogle Scholar
Cheng, R.K. 1984 Conditional sampling of turbulence intensities and Reynolds stress in premixed turbulent flames. Combust. Sci. Technol. 41 (3–4), 109142.CrossRefGoogle Scholar
Chiu, H. & Summerfield, M. 1974 Theory of combustion noise. Acta Astronaut. 1 (7–8), 967984.CrossRefGoogle Scholar
Choi, H. & Moin, P. 1990 On the space-time characteristics of wall-pressure fluctuations. Phys. Fluids A 2 (8), 14501460.CrossRefGoogle Scholar
Clavin, P. 1985 Dynamic behavior of premixed flame fronts in laminar and turbulent flows. Prog. Energy Combust. Sci. 11 (1), 159.CrossRefGoogle Scholar
Clavin, P. & Siggia, E.D. 1991 Turbulent premixed flames and sound generation. Combust. Sci. Technol. 78 (1–3), 147155.CrossRefGoogle Scholar
Coffee, T.P. 1984 Kinetic mechanisms for premixed, laminar, steady state methane/air flames. Combust. Flame 55 (2), 161170.CrossRefGoogle Scholar
Colonius, T., Lele, S.K. & Moin, P. 1997 Sound generation in a mixing layer. J. Fluid Mech. 330, 375409.CrossRefGoogle Scholar
Correa, S.M. 1998 Power generation and aeropropulsion gas turbines: from combustion science to combustion technology. Symp. Combust. 27 (2), 17931807.CrossRefGoogle Scholar
Cuenot, B., Riber, E. & Franzelli, B. 2014 Towards the prediction of soot in aero-engine combustors with large eddy simulation. In Proceedings of the Summer Program, pp. 117–126. Center for Turbulence Research, NASA Ames/Stanford University.Google Scholar
Dave, H.L. & Chaudhuri, S. 2020 Evolution of local flame displacement speeds in turbulence. J. Fluid Mech. 884, A46.CrossRefGoogle Scholar
Dowling, A.P. 1992 Thermoacoustic sources and instabilities. In Modern Methods in Analytical Acoustics, vol. 92, pp. 378–405. Springer-Verlag.CrossRefGoogle Scholar
Dowling, A.P. & Mahmoudi, Y. 2015 Combustion noise. Proc. Combust. Inst. 35 (1), 65100.CrossRefGoogle Scholar
Dufresnes, Y., Moureau, V., Masi, E., Simonin, O. & Horwitz, J. 2016 Simulation of a reactive fluidized bed reactor using CFD/DEM simulation. In Proceedings of the Summer Program, pp. 35–44. Center for Turbulence Research, NASA Ames/Stanford University.Google Scholar
Franzelli, B. 2011 Impact of the chemical description on direct numerical simulations and large eddy simulations of turbulent combustion in industrial aero-engines. PhD thesis, Institut National Polytechnique de Toulouse.Google Scholar
Franzelli, B., Riber, E., Gicquel, L. & Poinsot, T. 2012 Large eddy simulation of combustion instabilities in a lean partially premixed swirled flame. Combust. Flame 159 (2), 621637.CrossRefGoogle Scholar
Freund, J.B. 1997 Proposed inflow/ouflow boundary conditions for direct computation of aerodynamic sound. AIAA J. 35 (4), 740742.CrossRefGoogle Scholar
Furukawa, J., Noguchi, Y., Hirano, T. & Williams, F.A. 2002 Anisotropic enhancement of turbulence in large-scale, low-intensity turbulent premixed propane-air flames. J. Fluid Mech. 462, 209243.CrossRefGoogle Scholar
Ghani, A. & Poinsot, T. 2017 Flame quenching at walls: a source of sound generation. Flow Turbul. Combust. 99 (1), 173184.CrossRefGoogle Scholar
Haghiri, A., Talei, M., Brear, M.J. & Hawkes, E.R. 2018 Sound generation by turbulent premixed flames. J. Fluid Mech. 843, 2952.CrossRefGoogle Scholar
Haworth, D., Blint, R.J., Cuenot, B. & Poinsot, T. 2000 Numerical simulation of turbulent propane-air combustion with nonhomogeneous reactants. Combust. Flame 121 (3), 395417.CrossRefGoogle Scholar
Hilbert, R., Tap, F., El-Rabii, H. & Thévenin, D. 2004 Impact of detailed chemistry and transport models on turbulent combustion simulations. Prog. Energy Combust. Sci. 30 (1), 61117.CrossRefGoogle Scholar
Hilka, M., Veynante, D., Baum, M. & Poinsot, T. 1995 Simulation of flame vortex interactions using detailed and reduced chemical kinetics. In 10th Symposium on Turbulent Shear Flows, pp. 19–24.Google Scholar
Hurle, I.R., Price, R.B., Sugden, T.M. & Thomas, A. 1968 Sound emission from open turbulent premixed flames. Proc. R. Soc. Lond. A 303 (1475), 409427.Google Scholar
Hussein, H.J., Capp, S.P. & George, W.K. 1994 Velocity measurements in a high-Reynolds-number. Momentum conserving, axisymmetric, turbulent jet. J. Fluid Mech. 258, 3175.CrossRefGoogle Scholar
Ihme, M. 2017 Combustion and engine-core noise. Annu. Rev. Fluid Mech. 49, 227310.CrossRefGoogle Scholar
Ihme, M. & Pitsch, H. 2012 On the generation of direct combustion noise in turbulent non-premixed flames. Intl J. Aeroacoust. 11 (1), 2578.CrossRefGoogle Scholar
Ihme, M., Pitsch, H. & Bodony, D.J. 2009 Radiation of noise in turbulent non-premixed flames. Proc. Combust. Inst. 32 (1), 15451553.Google Scholar
Jiang, B., Gordon, R.L. & Talei, M. 2019 Head-on quenching of laminar premixed methane flames diluted with hot combustion products. Proc. Combust. Inst. 37 (4), 50955103.CrossRefGoogle Scholar
Jimenez, C., Cuenot, B., Poinsot, T. & Haworth, D. 2002 Numerical simulation and modeling for lean stratified propane-air flames. Combust. Flame 128, 121.CrossRefGoogle Scholar
Jimenez, C., Haghiri, A., Brear, M.J., Talei, M. & Hawkes, E.R. 2015 Sound generation by premixed flame annihilation with full and simple chemistry. Proc. Combust. Inst. 35 (3), 33173325.CrossRefGoogle Scholar
Jimenez, C. & Kurdyumov, V.N. 2017 Propagation of symmetric and non-symmetric lean hydrogen-air flames in narrow channels: influence of heat losses. Proc. Combust. Inst. 36 (1), 15591567.CrossRefGoogle Scholar
Kee, R.J., Rupley, F.M. & Miller, J.A. 1989 CHEMKIN-II: A FORTRAN chemical kinetics package for the analysis of gas-phase chemical kinetics. Tech. Rep. SAND-89-8009. Sandia National Labs.Google Scholar
Kennedy, C.A. & Carpenter, M.H. 1994 Several new numerical methods for compressible shear-layer simulations. Appl. Numer. Maths 14 (4), 397433.CrossRefGoogle Scholar
Klimenko, A.Y. & Class, A.G. 2000 On premixed flames as gasdynamic discontinuities: a simple approach to derive their propagation speed. Combust. Sci. Technol. 160 (1), 2333.CrossRefGoogle Scholar
Ko, N.W.M. & Davies, P.O.A.L. 1971 The near field within the potential cone of subsonic cold jets. J. Fluid Mech. 50, 4978.CrossRefGoogle Scholar
Kotake, S. & Takamoto, K. 1987 Combustion noise: effects of the shape and size of burner nozzle. J. Sound Vib. 112 (2), 345354.CrossRefGoogle Scholar
Leyko, M., Nicoud, F. & Poinsot, T. 2009 Comparison of direct and indirect combustion noise mechanisms in a model combustor. AIAA J. 47 (11), 27092716.CrossRefGoogle Scholar
Lourier, J.M., Stöhr, M., Noll, B., Werner, S. & Fiolitakis, A. 2017 Scale adaptive simulation of a thermoacoustic instability in a partially premixed lean swirl combustor. Combust. Flame 183, 343357.CrossRefGoogle Scholar
Lovas, T., Amneus, P., Mauss, F. & Mastorakos, E. 2002 Comparison of automatic reduction procedures for ignition chemistry. Proc. Combust. Inst. 29 (1), 13871393.CrossRefGoogle Scholar
Ma, M.C., Talei, M. & Sandberg, R.D. 2020 Direct numerical simulation of turbulent premixed jet flames: influence of inflow boundary conditions. Combust. Flame 213, 240254.CrossRefGoogle Scholar
Magri, L. 2017 On indirect noise in multicomponent nozzle flows. J. Fluid Mech. 828, R2.CrossRefGoogle Scholar
Magri, L., O'Brien, J. & Ihme, M. 2016 Compositional inhomogeneities as a source of indirect combustion noise. J. Fluid Mech. 799, R4.CrossRefGoogle Scholar
Markstein, G.H. 1964 Non-Steady Flame Propagation, p. 22. Pergamon.Google Scholar
Matalon, M. 1983 On flame stretch. Combust. Sci. Technol. 31 (3–4), 169181.CrossRefGoogle Scholar
Matalon, M. & Matkowsky, B.J. 1982 Flames as gasdynamic discontinuities. J. Fluid Mech. 124, 239259.CrossRefGoogle Scholar
Metcalfe, W.K., Burke, S.M., Ahmed, S.S. & Curran, H.J. 2013 A hierarchical and comparative kinetic modeling study of C1–C2 hydrocarbon and oxygenated fuels. Intl J. Chem. Kinet. 45 (10), 638675.CrossRefGoogle Scholar
Mitchell, B.E. 1996 Direct computation of the sound generated by subsonic and supersonic axisymmetric jets. PhD thesis, Stanford University.Google Scholar
Moore, C.J. 1977 The role of shear-layer instability waves in jet exhaust noise. J. Fluid Mech. 80, 321367.Google Scholar
Palulli, R., Talei, M. & Gordon, R.L. 2019 Unsteady flame–wall interaction: impact on CO emission and wall heat flux. Combust. Flame 207, 406416.Google Scholar
Passot, T. & Pouquet, A. 1987 Numerical simulation of compressible homogeneous flows in the turbulent regime. J. Fluid Mech. 181, 441466.CrossRefGoogle Scholar
Pelce, P. & Clavin, P. 1982 Influence of hydrodynamics and diffusion upon the stability limits of laminar premixed flames. J. Fluid Mech. 124, 219237.CrossRefGoogle Scholar
Peters, N. 1999 The turbulent burning velocity for large-scale and small-scale turbulence. J. Fluid Mech. 384, 107132.CrossRefGoogle Scholar
Peters, N., Terhoeven, P., Chen, J.H. & Echekki, T. 1998 Statistics of flame displacement speeds from computations of 2-D unsteady methane-air flames. Symp. Combust. 27 (1), 833839.CrossRefGoogle Scholar
Poinsot, T. 2017 Prediction and control of combustion instabilities in real engines. Proc. Combust. Inst. 36 (1), 128.CrossRefGoogle Scholar
Poinsot, T. & Veynante, D. 2005 Theoretical and Numerical Combustion, 3rd edn. RT Edwards Inc.Google Scholar
Price, R.B., Hurle, I.R. & Sugden, T.M. 1969 Optical studies of the generation of noise in turbulent flames. Symp. Combust. 12 (1), 10931102.CrossRefGoogle Scholar
Rajaram, R., Gray, J. & Lieuwen, T. 2006 Premixed combustion noise scaling: total power and spectra. In 12th AIAA/CEAS Aeroacoustics Conference (27th AIAA Aeroacoustics Conference). p. 2612. American Institute of Aeronautics and Astronautics.CrossRefGoogle Scholar
Rajaram, R. & Lieuwen, T. 2009 Acoustic radiation from turbulent premixed flames. J. Fluid Mech. 637, 357385.Google Scholar
Ramohalli, K. 1979 Acoustic diagnostics of the non-premixed turbulent jet flame. In 5th Aeroacoustics Conference, p. 591. American Institute of Aeronautics and Astronautics.CrossRefGoogle Scholar
Rivera, J., Gordon, R.L., Brouzet, D. & Talei, M. 2019 Exhaust CO emissions of a laminar premixed propane-air flame interacting with cold gas jets. Combust. Flame 210, 374388.CrossRefGoogle Scholar
Rudy, D.H. & Strikwerda, J.C. 1980 A nonreflecting outflow boundary condition for subsonic Navier–Stokes calculations. J. Comput. Phys. 36 (1), 5570.CrossRefGoogle Scholar
Sankaran, R., Hawkes, E.R., Chen, J.H., Lu, T. & Law, C.K. 2007 Structure of a spatially developing turbulent lean methane-air Bunsen flame. Proc. Combust. Inst. 31 (1), 12911298.CrossRefGoogle Scholar
Schuller, T., Durox, D. & Candel, S. 2002 Dynamics of and noise radiated by a perturbed impinging premixed jet flame. Combust. Flame 128 (1–2), 88110.CrossRefGoogle Scholar
Shepherd, I.G., Moss, J.B. & Bray, K.N.C. 1982 Turbulent transport in a confined premixed flame. Symp. Combust. 19 (1), 423431.Google Scholar
Steinberg, A.M., Driscoll, J.F. & Ceccio, S.L. 2008 Measurements of turbulent premixed flame dynamics using cinema stereoscopic PIV. Exp. Fluids 44 (6), 985999.CrossRefGoogle Scholar
Strahle, W.C. 1971 On combustion generated noise. J. Fluid Mech. 49 (2), 399414.CrossRefGoogle Scholar
Strahle, W.C. 1978 Combustion noise. Prog. Energy Combust. Sci. 4 (3), 157176.Google Scholar
Strahle, W.C. 1985 A more modern theory on combustion noise. In Recent Advances in the Aerospace Sciences (ed. C. Casci), pp. 103–114. Springer.CrossRefGoogle Scholar
Swaminathan, N., Xu, G., Dowling, A.P. & Balachandran, R. 2011 Heat release rate correlation and combustion noise in premixed flames. J. Fluid Mech. 681, 80115.CrossRefGoogle Scholar
Talei, M., Brear, M.J. & Hawkes, E.R. 2011 Sound generation by laminar premixed flame annihilation. J. Fluid Mech. 679, 194218.Google Scholar
Tam, C.K., Bake, F., Hultgren, L.S. & Poinsot, T. 2019 Aircraft noise generation and assessment. CEAS Aeronaut. J. 10 (1), 101122.CrossRefGoogle Scholar
Thomas, A. & Williams, G.T. 1966 Flame noise: sound emission from spark-ignited bubbles of combustible gas. Proc. R. Soc. Lond. A 294 (1439), 449466.Google Scholar
Thornber, B., Bilger, R.W., Masri, A.R. & Hawkes, E.R. 2011 An algorithm for LES of premixed compressible flows using the conditional moment closure model. J. Comput. Phys. 230 (20), 76877705.Google Scholar
Trivedi, S., Griffiths, R., Kolla, H., Chen, J.H. & Cant, R.S. 2019 Topology of pocket formation in turbulent premixed flames. Proc. Combust. Inst. 37 (2), 26192626.CrossRefGoogle Scholar
Truffaut, J. 1998 Étude expérimentale de l'origine du bruit émis par les flammes de chalumeaux. PhD thesis, Université de Provence-Aix-Marseille I.Google Scholar
Vreman, A.W., Van Oijen, J.A., De Goey, L.P.H. & Bastiaans, R.J.M. 2009 Subgrid scale modeling in large-eddy simulation of turbulent combustion using premixed flamelet chemistry. Flow Turbul. Combust. 82 (4), 511535.CrossRefGoogle Scholar
Wang, H., Hawkes, E.R. & Chen, J.H. 2016 Turbulence-flame interactions in DNS of a laboratory high Karlovitz premixed turbulent jet flame. Phys. Fluids 28 (9), 095107.CrossRefGoogle Scholar
Welch, P. 1967 The use of fast Fourier transform for the estimation of power spectra: a method based on time averaging over short, modified periodograms. IEEE Trans. Audio Electroacoust. 15 (2), 7073.CrossRefGoogle Scholar
Wilfert, G., Sieber, J., Rolt, A., Baker, N., Touyeras, A. & Colantuoni, S. 2007 New environmental friendly aero engine core concepts. In 18th International Symposium on Air Breathing Engines, AIAA Paper 2007–1120.Google Scholar
Wills, J.A.B. 1964 On convection velocities in turbulent shear flows. J. Fluid Mech. 20 (3), 417432.CrossRefGoogle Scholar
Wu, X. & Moin, P. 2008 A direct numerical simulation study on the mean velocity characteristics in turbulent pipe flow. J. Fluid Mech. 608, 81112.CrossRefGoogle Scholar
Zhang, F., Habisreuther, P., Bockhorn, H., Nawroth, H. & Paschereit, C.O. 2013 On prediction of combustion generated noise with the turbulent heat release rate. Acta Acust. United Acust. 99 (6), 940951.CrossRefGoogle Scholar
Zhang, S. & Rutland, C.J. 1995 Premixed flame effects on turbulence and pressure-related terms. Combust. Flame 102 (4), 447461.CrossRefGoogle Scholar
Zhang, Z., Zhao, D., Li, S.H., Ji, C.Z., Li, X.Y. & Li, J.W. 2015 Transient energy growth of acoustic disturbances in triggering self-sustained thermoacoustic oscillations. Energy 82, 370381.CrossRefGoogle Scholar
Zheng, X.L., Lu, T. & Law, C.K. 2007 Experimental counterflow ignition temperatures and reaction mechanisms of 1,3-butadiene. Proc. Combust. Inst. 31 (1), 367375.CrossRefGoogle Scholar
Zhou, J., Adrian, R.J., Balachandar, S. & Kendall, T.M. 1999 Mechanisms for generating coherent packets of hairpin vortices in channel flow. J. Fluid Mech. 387, 353396.CrossRefGoogle Scholar

Brouzet et al. supplementary movie 1

Animation of the swirling strength $lambda_{ci}$ and flame surface (yellow line) on the central XY plane for the BFER case
Download Brouzet et al. supplementary movie 1(Video)
Video 4.1 MB

Brouzet et al. supplementary movie 2

Animation of the swirling strength $lambda_{ci}$ and flame surface (yellow line) on the central XY plane for the COFFEE case
Download Brouzet et al. supplementary movie 2(Video)
Video 5.2 MB