Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-26T23:31:38.309Z Has data issue: false hasContentIssue false

Image-based modelling of coke combustion in a multiscale porous medium using a micro-continuum framework

Published online by Cambridge University Press:  15 December 2021

Qianghui Xu*
Affiliation:
Key Laboratory for Thermal Science and Power Engineering of the Ministry of Education, Department of Energy and Power Engineering, Tsinghua University, Beijing 100084, PR China
Xiaoye Dai
Affiliation:
Key Laboratory for Thermal Science and Power Engineering of the Ministry of Education, Department of Energy and Power Engineering, Tsinghua University, Beijing 100084, PR China
Junyu Yang
Affiliation:
Key Laboratory for Thermal Science and Power Engineering of the Ministry of Education, Department of Energy and Power Engineering, Tsinghua University, Beijing 100084, PR China
Zhiying Liu
Affiliation:
Key Laboratory for Thermal Science and Power Engineering of the Ministry of Education, Department of Energy and Power Engineering, Tsinghua University, Beijing 100084, PR China
Lin Shi*
Affiliation:
Key Laboratory for Thermal Science and Power Engineering of the Ministry of Education, Department of Energy and Power Engineering, Tsinghua University, Beijing 100084, PR China
*
Email addresses for Correspondence: [email protected], [email protected]
Email addresses for Correspondence: [email protected], [email protected]

Abstract

Non-isothermal reactive transport in complicated porous media is diverse in nature and industrial applications. There are challenges in the modelling of multiple physicochemical processes in multiscale pore structures with various length scales ranging from nanometres to micrometres. This study focuses on coke combustion during in situ crude oil combustion techniques. A micro-continuum model was developed to perform an image-based simulation of coke combustion through a multiscale porous medium. The simulation coupled weakly compressible gas flow, species transport, conjugate heat transfer, heterogeneous coke oxidation kinetics and structural evolution. The unresolved nanoporous coke region was treated as a continuum, for which the random pore model, permeability model and species diffusivity model were integrated as sub-grid models to account for the sub-resolution reactive surface area, Darcy flow and Knudsen diffusion, respectively. A PeDa diagram was provided to present five characteristic combustion regimes covering the ignition temperature and air flux in realistic field operations and laboratory measurements. The present model proved to achieve more accurate predictions of the feasible ignition temperature than previous models. Compared with the air flux of $\phi \sim O\textrm{(1) s}{\textrm{m}^\textrm{3}}(\textrm{air})\;{({\textrm{m}^\textrm{2}}\ \textrm{h})^{ - 1}}$ in the field, the increasing air flux in the laboratory transformed the combustion regime from diffusion-limited to convection-limited, which led to an overpredicted burning temperature. Reactive fingering combustion was analysed to understand the potential risks in some experimental measurements. The findings provide a better understanding of coke combustion and can help engineers design sustainable combustion methods. The developed image-based model allows other types of multiscale and nonlinear reactive transport to be simulated.

Type
JFM Papers
Copyright
© The Author(s), 2021. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alamatsaz, A., Moore, R.G., Mehta, S.A. & Ursenbach, M.G. 2011 Experimental investigation of in-situ combustion at low air fluxes. J. Can. Petrol. Technol. 50 (11–12), 4867.10.2118/144517-PACrossRefGoogle Scholar
Aleksandrov, D., Kudryavtsev, P. & Hascakir, B. 2017 Variations in in-situ combustion performance due to fracture orientation. J. Petrol. Sci. Engng 154, 488494.10.1016/j.petrol.2017.02.002CrossRefGoogle Scholar
Auriault, J.-L. 2008 On the domain of validity of Brinkman's equation. Transp. Porous Med. 79 (2), 215223.10.1007/s11242-008-9308-7CrossRefGoogle Scholar
Berg, S., et al. 2019 Ilastik: interactive machine learning for (bio)image analysis. Nat. Meth. 16 (12), 12261232.CrossRefGoogle ScholarPubMed
Bhatia, S.K. & Perlmutter, D.D. 1980 A random pore model for fluid-solid reactions: I. Isothermal, kinetic control. AIChE J. 26 (3), 379386.10.1002/aic.690260308CrossRefGoogle Scholar
Bhutto, A.W., Bazmi, A.A. & Zahedi, G. 2013 Underground coal gasification: from fundamentals to applications. Prog. Energy Combust. Sci. 39 (1), 189214.10.1016/j.pecs.2012.09.004CrossRefGoogle Scholar
Bijeljic, B. & Blunt, M.J. 2007 Pore-scale modeling of transverse dispersion in porous media. Water Resour. Res. 43 (12), W12S11.10.1029/2006WR005700CrossRefGoogle Scholar
Brinkman, H. 1949 a A calculation of the viscous force exerted by a flowing fluid on a dense swarm of particles. Appl. Sci. Res. A1, 2734.CrossRefGoogle Scholar
Brinkman, H.C. 1949 b A calculation of the viscous force exerted by a flowing fluid on a dense swarm of particles. Flow Turbul. Combust. 1 (1), 2734.CrossRefGoogle Scholar
Bultreys, T., De Boever, W. & Cnudde, V. 2016 Imaging and image-based fluid transport modeling at the pore scale in geological materials: a practical introduction to the current state-of-the-art. Earth-Sci. Rev. 155, 93128.CrossRefGoogle Scholar
Carrillo, F.J., Bourg, I.C. & Soulaine, C. 2020 Multiphase flow modeling in multiscale porous media: an open-source micro-continuum approach. J. Comput. Phys: X 8, 100073.Google Scholar
Cinar, M., Castanier, L.M. & Kovscek, A.R. 2011 Combustion kinetics of heavy oils in porous media. Energy Fuels 25 (10), 44384451.10.1021/ef200680tCrossRefGoogle Scholar
Cussler, E.L. & Cussler, E.L. 2009 Diffusion: Mass Transfer in Fluid Systems. Cambridge University Press.10.1017/CBO9780511805134CrossRefGoogle Scholar
Ehrenberg, S.N. & Nadeau, P.H. 2005 Sandstone vs. carbonate petroleum reservoirs: a global perspective on porosity-depth and porosity-permeability relationships. AAPG Bull. 89 (4), 435445.10.1306/11230404071CrossRefGoogle Scholar
Fairbanks, D. & Wilke, C. 1950 Diffusion coefficients in multicomponent gas mixtures. Ind. Engng Chem. 42 (3), 471475.10.1021/ie50483a022CrossRefGoogle Scholar
Fei, H., Hu, S., Xiang, J., Sun, L., Fu, P. & Chen, G. 2011 Study on coal chars combustion under O2/CO2 atmosphere with fractal random pore model. Fuel 90 (2), 441448.10.1016/j.fuel.2010.09.027CrossRefGoogle Scholar
Ferziger, J.H., Perić, M. & Street, R.L. 2002 Computational Methods for Fluid Dynamics. Springer.CrossRefGoogle Scholar
Fong, G.H., Jorgensen, S. & Singer, S.L. 2018 Pore-resolving simulation of char particle gasification using micro-CT. Fuel 224, 752763.CrossRefGoogle Scholar
Gates, C.F. & Ramey, H.J. 1980 A method for engineering in-situ combustion oil recovery projects. J. Petrol. Tech. 32 (02), 285294.10.2118/7149-PACrossRefGoogle Scholar
Golfier, F., Bazin, B., Lenormand, R. & Quintard, M. 2004 Core-scale description of porous media dissolution during acid injection - part I: theoretical development. Comput. Appl. Maths 23 (2–3), 173–194.Google Scholar
Golfier, F., Zarcone, C., Bazin, B., Lenormand, R., Lasseux, D. & Quintard, M. 2002 On the ability of a Darcy-scale model to capture wormhole formation during the dissolution of a porous medium. J. Fluid Mech. 457, 213254.CrossRefGoogle Scholar
Guo, B., Ma, L. & Tchelepi, H.A. 2018 Image-based micro-continuum model for gas flow in organic-rich shale rock. Adv. Water Resour. 122, 7084.10.1016/j.advwatres.2018.10.004CrossRefGoogle Scholar
Issa, R.I. 1986 Solution of the implicitly discretised fluid flow equations by operator-splitting. J. Comput. Phys. 62 (1), 4065.CrossRefGoogle Scholar
Iwaszenko, S., Howaniec, N. & Smoliński, A. 2019 Determination of random pore model parameters for underground coal gasification simulation. Energy 166, 972978.10.1016/j.energy.2018.10.156CrossRefGoogle Scholar
Jasak, H. 1996 Error analysis and estimation for the finite volume method with applications to fluid flows. PhD thesis, Department of Mechanical Engineering Imperial College of Science, Technology and Medicine.Google Scholar
Jasak, H., Jemcov, A. & Tukovic, Z. 2007 OpenFOAM: A C++ library for complex physics simulations. In International Workshop on Coupled Methods in Numerical Dynamics. IUC Dubrovnik Croatia.Google Scholar
Kang, Q., Lichtner, P.C. & Zhang, D. 2006 Lattice Boltzmann pore-scale model for multicomponent reactive transport in porous media. J. Geophys. Res. 111 (B5), B05203.Google Scholar
Krishna, R. & Wesselingh, J. 1997 The Maxwell-Stefan approach to mass transfer. Chem. Engng Sci. 52 (6), 861911.10.1016/S0009-2509(96)00458-7CrossRefGoogle Scholar
Lei, T. & Luo, K.H. 2021 Pore-scale simulation of miscible viscous fingering with dissolution reaction in porous media. Phys. Fluids 33 (3), 034134.10.1063/5.0045051CrossRefGoogle Scholar
Lei, T., Wang, Z. & Luo, K.H. 2021 Study of pore-scale coke combustion in porous media using lattice Boltzmann method. Combust. Flame 225, 104119.CrossRefGoogle Scholar
Lemmon, E.W., Huber, M.L. & McLinden, M.O. 2002 NIST reference fluid thermodynamic and transport properties–REFPROP, version 8.0. National Institute ofStandards and Technology, Standard Reference Data Program, Gaithersburg.Google Scholar
Lévy, T. 1983 Fluid flow through an array of fixed particles. Intl J. Engng Sci. 21 (1), 1123.CrossRefGoogle Scholar
Liang, J., Guan, W., Jiang, Y., Xi, C., Wang, B. & Li, X. 2012 Propagation and control of fire front in the combustion assisted gravity drainage using horizontal wells. Petrol. Explor. Dev. 39 (6), 764772.CrossRefGoogle Scholar
Liang, J., Guan, W., Wu, Y., Wang, B. & Huang, J. 2013 Combustion front expanding characteristic and risk analysis of THAI process. In IPTC 2013: International Petroleum Technology Conference. IPTC-16426-MS.Google Scholar
Lis-Śledziona, A. 2019 Petrophysical rock typing and permeability prediction in tight sandstone reservoir. Acta Geophys. 67 (6), 18951911.CrossRefGoogle Scholar
Lisandy, K.Y., Kim, G.-M., Kim, J.-H., Kim, G.-B. & Jeon, C.-H. 2017 Enhanced accuracy of the reaction rate prediction model for carbonaceous solid fuel combustion. Energy Fuels 31 (5), 51355144.CrossRefGoogle Scholar
Liu, D., Tang, J., Zheng, R. & Song, Q. 2021 Determination of the propagation state of the combustion zone during in-situ combustion by dimensionless numbers. Fuel 284, 118972.CrossRefGoogle Scholar
Luo, H., Laouafa, F., Debenest, G. & Quintard, M. 2015 Large scale cavity dissolution: from the physical problem to its numerical solution. Eur. J. Mech. (B/Fluids) 52, 131146.CrossRefGoogle Scholar
Luo, H., Laouafa, F., Guo, J. & Quintard, M. 2014 Numerical modeling of three-phase dissolution of underground cavities using a diffuse interface model. Intl J. Numer. Anal. Meth. Geomech. 38 (15), 16001616.CrossRefGoogle Scholar
Luo, H., Quintard, M., Debenest, G. & Laouafa, F. 2012 Properties of a diffuse interface model based on a porous medium theory for solid–liquid dissolution problems. Comput. Geosci. 16 (4), 913932.CrossRefGoogle Scholar
Maggiolo, D., Picano, F., Zanini, F., Carmignato, S., Guarnieri, M., Sasic, S. & Ström, H. 2020 Solute transport and reaction in porous electrodes at high Schmidt numbers. J. Fluid Mech. 896, A13.10.1017/jfm.2020.344CrossRefGoogle Scholar
Mahinpey, N., Ambalae, A. & Asghari, K. 2007 In situ combustion in enhanced oil recovery (EOR): a review. Chem. Engng Commun. 194 (8), 9951021.CrossRefGoogle Scholar
Mokheimer, E.M.A., Hamdy, M., Abubakar, Z., Shakeel, M.R., Habib, M.A. & Mahmoud, M. 2019 A comprehensive review of thermal enhanced oil recovery: techniques evaluation. J. Energy Resour. Technol. 141 (3), 030801.CrossRefGoogle Scholar
Molins, S. 2015 Reactive interfaces in direct numerical simulation of pore-scale processes. Rev. Mineral Geochem. 80 (1), 461481.CrossRefGoogle Scholar
Moore, R., Laureshen, C., Mehta, S. & Ursenbach, M. 1999 Observations and design considerations for in situ combustion projects. J. Can. Petrol. Technol. 38 (13), 97–100.CrossRefGoogle Scholar
Neale, G. & Nader, W. 1974 Practical significance of Brinkman's extension of darcy's law: coupled parallel flows within a channel and a bounding porous medium. Can. J. Chem. Engng 52 (4), 475478.CrossRefGoogle Scholar
Nissen, A., Zhu, Z., Kovscek, A., Castanier, L. & Gerritsen, M. 2015 Upscaling kinetics for field-scale in-situ-combustion simulation. SPE Res. Eval. Engng 18 (2), 158170.CrossRefGoogle Scholar
Ouyang, X., Xu, R., Zhang, L., Zhou, B. & Jiang, P.-X. 2014 Prediction of effective thermal conductivity of sintered porous media with the discrete element method. In International Heat Transfer Conference Digital Library. Begel House Inc. pp. 1422–1430.CrossRefGoogle Scholar
Patankar, S.V. & Spalding, D.B. 1983 A Calculation Procedure for Heat, Mass and Momentum Transfer in Three-Dimensional Parabolic Flows. Elsevier.CrossRefGoogle Scholar
Pereira Nunes, J., Blunt, M. & Bijeljic, B. 2016 Pore-scale simulation of carbonate dissolution in micro-CT images. J. Geophys. Res. Solid Earth 121 (2), 558576.CrossRefGoogle Scholar
Qiu, G., Dennison, C., Knehr, K., Kumbur, E. & Sun, Y. 2012 Pore-scale analysis of effects of electrode morphology and electrolyte flow conditions on performance of vanadium redox flow batteries. J. Power Sources 219, 223234.CrossRefGoogle Scholar
Rein, G. 2009 Smouldering combustion phenomena in science and technology. Intl Rev. Chem. Engng 1, 318.Google Scholar
Ren, Y., Freitag, N. & Mahinpey, N. 2007 A simple kinetic model for coke combustion during an in situ combustion (ISC) process. J. Can. Petrol. Technol. 46 (4), 4753.CrossRefGoogle Scholar
Scheibe, T.D., Perkins, W.A., Richmond, M.C., McKinley, M.I., Romero-Gomez, P.D.J., Oostrom, M., Wietsma, T.W., Serkowski, J.A. & Zachara, J.M. 2015 Pore-scale and multiscale numerical simulation of flow and transport in a laboratory-scale column. Water Resour. Res. 51 (2), 10231035.CrossRefGoogle Scholar
Scholes, G.C., Gerhard, J.I., Grant, G.P., Major, D.W., Vidumsky, J.E., Switzer, C. & Torero, J.L. 2015 Smoldering remediation of coal-tar-contaminated soil: pilot field tests of STAR. Environ. Sci. Technol. 49 (24), 1433414342.10.1021/acs.est.5b03177CrossRefGoogle ScholarPubMed
Soulaine, C., Creux, P. & Tchelepi, H.A. 2019 Micro-continuum framework for pore-scale multiphase fluid transport in shale formations. Transp. Porous Med. 127 (1), 85112.CrossRefGoogle Scholar
Soulaine, C., Roman, S., Kovscek, A. & Tchelepi, H.A. 2017 Mineral dissolution and wormholing from a pore-scale perspective. J. Fluid Mech. 827, 457483.CrossRefGoogle Scholar
Soulaine, C., Roman, S., Kovscek, A. & Tchelepi, H.A. 2018 Pore-scale modelling of multiphase reactive flow: application to mineral dissolution with production CO2. J. Fluid Mech. 855, 616645.CrossRefGoogle Scholar
Soulaine, C. & Tchelepi, H.A. 2016 Micro-continuum approach for pore-scale simulation of subsurface processes. Transp. Porous Med. 113 (3), 431456.CrossRefGoogle Scholar
Tam, C.K. 1969 The drag on a cloud of spherical particles in low Reynolds number flow. J. Fluid Mech. 38 (3), 537546.CrossRefGoogle Scholar
Veldsink, J., Van Damme, R.M., Versteeg, G. & Van Swaaij, W.P.M. 1995 The use of the dusty-gas model for the description of mass transport with chemical reaction in porous media. Chem. Engng. J. Biochem. Engng J. 57 (2), 115126.10.1016/0923-0467(94)02929-6CrossRefGoogle Scholar
Wakao, N. & Smith, J. 1962 Diffusion in catalyst pellets. Chem. Engng Sci. 17 (11), 825834.CrossRefGoogle Scholar
Wang, H., Liu, S., Li, X., Yang, D., Wang, X. & Song, C. 2018 Morphological and structural evolution of bituminous coal slime particles during the process of combustion. Fuel 218, 4958.CrossRefGoogle Scholar
Weller, H.G., Tabor, G., Jasak, H. & Fureby, C. 1998 A tensorial approach to computational continuum mechanics using object-oriented techniques. Comput. Phys. 12 (6), 620631.CrossRefGoogle Scholar
Whitaker, S. 1986 Flow in porous media I: a theoretical derivation of Darcy's law. Transp. Porous Med. 1 (1), 325.CrossRefGoogle Scholar
Whitaker, S. 2013 The Method of Volume Averaging. Springer Science & Business Media.Google Scholar
Wu, S., Guan, W., Wang, S. & Cao, J. 2007 Physical simulation of in-situ combustion of sensitive heavy oil reservoir. In Asia Pacific Oil and Gas Conference and Exhibition. Society of Petroleum Engineers. SPE-110374-MS.CrossRefGoogle Scholar
Xu, Q., Long, W., Jiang, H., Ma, B., Zan, C., Ma, D. & Shi, L. 2018 a Quantification of the microstructure, effective hydraulic radius and effective transport properties changed by the coke deposition during the crude oil in-situ combustion. Chem. Engng J. 331, 856869.CrossRefGoogle Scholar
Xu, Q., Long, W., Jiang, H., Zan, C., Huang, J., Chen, X. & Shi, L. 2018 b Pore-scale modelling of the coupled thermal and reactive flow at the combustion front during crude oil in-situ combustion. Chem. Engng J. 350, 776790.10.1016/j.cej.2018.04.114CrossRefGoogle Scholar
Yang, J., Dai, X., Xu, Q., Liu, Z., Zan, C., Long, W. & Shi, L. 2021 a Pore-scale study of multicomponent multiphase heat and mass transfer mechanism during methane hydrate dissociation process. Chem. Engng J. 423, 130206.10.1016/j.cej.2021.130206CrossRefGoogle Scholar
Yang, J., Xu, Q., Jiang, H. & Shi, L. 2021 b Reaction model of low asphaltene heavy oil from ramped temperature oxidation experimental analyses and numerical simulations. Energy 219, 119669.CrossRefGoogle Scholar
Young, T.J. & Vafai, K. 1998 Convective flow and heat transfer in a channel containing multiple heated obstacles. Intl J. Heat Mass Transfer 41 (21), 32793298.CrossRefGoogle Scholar
Yuan, C., Sadikov, K., Varfolomeev, M., Khaliullin, R., Pu, W., Al-Muntaser, A. & Saeed Mehrabi-Kalajahi, S. 2020 Low-temperature combustion behavior of crude oils in porous media under air flow condition for in-situ combustion (ISC) process. Fuel 259, 116293.CrossRefGoogle Scholar
Zhu, Z., Liu, Y., Liu, C., Wang, Y. & Kovscek, A.R. 2019 In-situ combustion frontal stability analysis. In SPE Western Regional Meeting. Society of Petroleum Engineers. SPE-195318-PA.Google Scholar
Supplementary material: File

Xu et al. supplementary material

Xu et al. supplementary material

Download Xu et al. supplementary material(File)
File 924.6 KB