Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-09T18:44:55.678Z Has data issue: false hasContentIssue false

Identification of turbulent wall eddies through the phase relation of the components of the fluctuating velocity gradient

Published online by Cambridge University Press:  29 March 2006

Myon Ki Lee
Affiliation:
Department of Chemical Engineering, University of Illinois, Urbana
Larry D. Eckelman
Affiliation:
Department of Chemical Engineering, University of Illinois, Urbana
Thomas J. Hanratty
Affiliation:
Department of Chemical Engineering, University of Illinois, Urbana

Abstract

Simultaneous measurements of the longitudinal (sx) and transverse (sz) components of the turbulent fluctuating velocity gradient at the wall of a pipe are presented for ten locations in the transverse direction. Separate measurements of sx and of sz are also presented for twenty locations. The sz pattern reveals alternating positive and negative values over lengths Λ of the magnitude suggested by the spacing of the streaky wall structure observed in a number of laboratories. Of particular interest is the observation of regular eddies for which the sz pattern is accompanied by a spatial variation of sx out of phase by about 1/4Λ. These regular eddies are associated with intermittent production of Reynolds stress and with the occurrence of large negative values of sx which could be identified with wall bursts previously reported. The time response of the axial flow appears to influence the development of these regular eddies in that the development of an sx pattern lags behind that of an sz pattern. Measurements of spatial correlations of sx and sz with different time delays, as well as direct observations of the temporal variation of sx and sz patterns, support these notions.

Type
Research Article
Copyright
© 1974 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bakewell, H. P. & Lumley, J. L. 1967 Phys. Fluids, 10, 1880.
Clark, J. A. 1968 J. Basic Engng, Trans. A.S.M.E. 90, 455.
Coantic, M. 1967 Proc. 4th Euromech. Colloq., Southampton.
Corino, E. R. & Brodkey, R. S. 1969 J. Fluid Mech. 37, 1.
Corrsin, S. 1956 Symp. on Naval Hydrodyn., p. 373.
Eckelman, L. D. 1971 Ph.D. thesis, University of Illinois.
Eckelmann, H. 1970 Mitteilungen MPI für Strömungsforschung und der A V A, Göttingen, no. 48.
Fortuna, G. 1970 Ph.D. thesis, University of Illinois.
Grant, H. L. 1958 J. Fluid Mech. 4, 149.
Grass, A. J. 1971 J. Fluid Mech. 50, 233.
Gupta, A. K., Laufer, J. & Kaplan, R. E. 1971 J. Fluid Mech. 50, 493.
Hinze, J. O. 1959 Turbulence, p. 523. McGraw-Hill.
Kim, H. T., Kline, S. J. & Reynolds, W. C. 1971 J. Fluid Mech. 50, 133.
Kline, S. J., Reynolds, W. C., Schraub, F. A. & Runstadler, P. W. 1967 J. Fluid Mech. 30, 741.
Kline, S. J. & Runstadler, P. W. 1959 J. Appl. Mech., Trans. A.S.M.E. 26, 166.
Lee, M. K. 1972 M.S. thesis, University of Illinois.
Mitchell, J. E. 1965 Ph.D. thesis, University of Illinois.
Mitchell, J. E. & Hanratty, T. J. 1966 J. Fluid Mech. 26, 199.
Rao, K. N., Narasimha, R. & Badri Narayanan, M. A. 1971 J. Fluid Mech. 48, 339.
Reiss, L. P. 1962 Ph.D. thesis, University of Illinois.
Reiss, L. P. & Hanratty, T. J. 1963 A.I.Ch.E. J. 9, 154.
Sirkar, K. K. 1969 Ph.D. thesis, University of Illinois.
Sirkar, K. K. & Hanratty, T. J. 1969 Indust. & Engng Chem. Fund. 8, 189.
Sirkar, K. K. & Hanratty, T. J. 1970a J. Fluid Mech. 44, 589.
Sirkar, K. K. & Hanratty, T. J. 1970b J. Fluid Mech. 44, 605.
Townsend, A. A. 1956 The Structure of Turbulent Shear Flow. Cambridge University Press.
Townsend, A. A. 1957 Symp. Int. Union of Theor. & Appl. Mech., p. 1. Springer.
Willmarth, W. W. & Lu, S. S. 1972 J. Fluid Mech. 55, 65.
Willmarth, W. W. & Tu, B. J. 1967 Phys. Fluids, 9 (suppl.), 134.