Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-09T22:03:39.868Z Has data issue: false hasContentIssue false

Hysteretic and chaotic dynamics of viscous drops in creeping flows with rotation

Published online by Cambridge University Press:  30 June 2008

Y.-N. YOUNG
Affiliation:
Department of Mathematical Sciences, New Jersey Institute of Technology, Newark, NJ 07102-1982, USA
J. BŁAWZDZIEWICZ
Affiliation:
Department of Mechanical Engineering, Yale University, PO Box 20-8286, New Haven, CT, 06520-8286, USA
V. CRISTINI
Affiliation:
School of Health Information Sciences and Biomedical Engineering, The University of Texas Health Science Center, Houston, TX 77030, USA
R. H. GOODMAN
Affiliation:
Department of Mathematical Sciences, New Jersey Institute of Technology, Newark, NJ 07102-1982, USA

Abstract

We have shown that high-viscosity drops in two-dimensional linear creeping flows with a non-zero vorticity component may have two stable stationary states. One state corresponds to a nearly spherical, compact drop stabilized primarily by rotation, and the other to an elongated drop stabilized primarily by capillary forces. Here we explore consequences of the drop bistability for the dynamics of highly viscous drops. Using both boundary-integral simulations and small-deformation theory we show that a quasi-static change of the flow vorticity gives rise to a hysteretic response of the drop shape, with rapid changes between the compact and elongated solutions at critical values of the vorticity. In flows with sinusoidal temporal variation of the vorticity we find chaotic drop dynamics in response to the periodic forcing. A cascade of period-doubling bifurcations is found to be directly responsible for the transition to chaos. In random flows we obtain a bimodal drop-length distribution. Some analogies with the dynamics of macromolecules and vesicles are pointed out.

Type
Papers
Copyright
Copyright © Cambridge University Press 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Barthès-Biesel, D. & Acrivos, A. 1973 Deformation and burst of a liquid droplet freely suspended in a linear shear field. J. Fluid Mech. 61, 121.CrossRefGoogle Scholar
Bentley, B. J. & Leal, L. G. 1986 An experimental investigation of drop deformation and breakup in steady, two-dimensional linear flows. J. Fluid Mech. 167, 241283.CrossRefGoogle Scholar
Bigio, D. I., Marks, C. R. & Calabrese, R. V. 1998 Predicting drop breakup in complex flows from model flow experiments. Intl. Polymer Process. 13, 192198.CrossRefGoogle Scholar
Bławzdziewicz, J. 2006 Boundary integral methods for Stokes flows. In Computational Methods for Multiphase Flow (ed. Prosperetti, A. & Tryggvason, G.). Cambridge University Press.Google Scholar
Bławzdziewicz, J., Cristini, V. & Loewenberg, M. 1997 Analysis of drop breakup in creeping flows. Bull. Am. Phys. Soc. 42, 2125.Google Scholar
Bławzdziewicz, J., Cristini, V. & Loewenberg, M. 1998 Critical conditions for drop breakup in linear flows. Bull. Am. Phys. Soc. 43, 2066.Google Scholar
Bławzdziewicz, J., Cristini, V. & Loewenberg, M. 2002 Critical behavior of drops in linear flows. I. Phenomenological theory for drop dynamics near critical stationary states. Phys. Fluids 14, 27092718.CrossRefGoogle Scholar
Bławzdziewicz, J., Cristini, V. & Loewenberg, M. 2003 Multiple stationary states for deformable drops in linear Stokes flows. Phys. Fluids 15, L3740.CrossRefGoogle Scholar
Borwankar, R. P. & Case, S. E. 1997 Rheology of emulsions, foams and gels. Curr. Opin. Colloid Interface Sci. 2, 584589.CrossRefGoogle Scholar
Cristini, V., Bławzdziewicz, J. & Loewenberg, M. 1998 Drop breakup in three-dimensional viscous flows. Phys. Fluids. 10, 17811784.CrossRefGoogle Scholar
Cristini, V., Bławzdziewicz, J. & Loewenberg, M. 2001 An adaptive mesh algorithm for evolving surfaces: Simulations of drop breakup and coalescence. J. Comput. Phys. 168, 445463.CrossRefGoogle Scholar
Cristini, V., Bławzdziewicz, J., Loewenberg, M. & Collins, L. R. 2003 a Breakup in stochastic Stokes flows: Sub-Kolmogorov drops in isotropic turbulence. J. Fluid Mech. 492, 231250.CrossRefGoogle Scholar
Cristini, V., Guido, S., Alfani, A., Bławzdziewicz, J. & Loewenberg, M. 2003 b Drop breakup and fragment size distribution in shear flow. J. Rheol. 47, 12831298.CrossRefGoogle Scholar
Cristini, V. & Tan, Y.-C. 2004 Theory and numerical simulation of droplet dynamics in complex flows – A review. Lab Chip 4, 257264.CrossRefGoogle ScholarPubMed
Drazin, P. G. 1992 Nonlinear Systems. Cambridge University Press.CrossRefGoogle Scholar
Fox, R. F., Gatland, I. R., Roy, R. & Vemuri, R. 1988 Fast, accurate algorithm for numerical simulation of exponentially correlated colored noise. Phys. Rev. A 38, 5938.CrossRefGoogle ScholarPubMed
Grigoriev, R. O., Schatz, M. F. & Sharma, V. 2006 Lab Chip 6, 13691372.CrossRefGoogle Scholar
Guckenheimer, J. & Holmes, P. 1983 Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields. Springer.CrossRefGoogle Scholar
de Guennes, P. G. 1974 Coil-stretch transition of dilute flexible polymers under ultrahigh velocity gradients. J. Chem. Phys. 60, 50305042.CrossRefGoogle Scholar
Guido, S., Grosso, M. & Maffettone, P. L. 2004 Newtonian drop in a Newtonian matrix subjected to large amplitude oscillatory shear flows. Rheol. Acta 43, 575583.CrossRefGoogle Scholar
Guido, S., Minale, M. & Maffettone, P. L. 2000 Drop shape dynamics under shear-flow reversal. J. Rheol. 44, 13851399.CrossRefGoogle Scholar
Hudson, S. D., Phelan, F. R., Handler, M. D., Cabral, J. T., Migler, K. B. & Amis, E. J. 2007 Microfluidic analog of the four-roll mill. Appl. Phys. Lett. 85, 335337.CrossRefGoogle Scholar
Jeffery, G. 1922 The motion of ellipsoidal particles immersed in a viscous fluid. Proc. Roy. Soc. A 102, 161179.Google Scholar
Kas-Danouche, S., Papageorgiou, D. T. & Siegel, M. 2007 Nonlinear dynamics of core-annular film flows in the presence of surfactant. J. Fluid Mech. (submitted).Google Scholar
Kennedy, M. R., Pozrikidis, C. & Skalak, R. 1994 Motion and deformation of liquid drops and the rheology of dilute emulsions in simple shear flow. Comput. Fluids 23, 251278.CrossRefGoogle Scholar
Lee, J. S., Dylla-Spears, R., Teclemariam, N. P. & Muller, S. J. 2007 Microfluidic four-roll mill for all flow types. Appl. Phys. Lett. 90, 074103.CrossRefGoogle Scholar
Lister, J. R. & Stone, H. A. 1998 Capillary breakup of a viscous thread surrounded by another viscous fluid. Phys. Fluids 10, 27582764.CrossRefGoogle Scholar
Mader, M.-A., Vitkova, V., Abkarian, M., Viallat, A. & Podgorski, T. 2006 Dynamics of viscous vesicles in shear flow. Eur. Phys. J. E 19, 389397.Google ScholarPubMed
Mason, T. G. 1999 New fundamental concepts in emulsion rheology. Curr. Opin. Colloid Interface Sci. 4, 231238.CrossRefGoogle Scholar
Misbah, C. 2006 Vacillating breathing and tumbling of vesicles under shear flow. Phys. Rev. Lett. 96, 028104.CrossRefGoogle ScholarPubMed
Mosler, A. B. & Shaqfeh, E. S. G. 1997 Drop breakup in the flow through fixed beds via stochastic simulation in model Gaussian fields. Phys. Fluids 9, 32093226.CrossRefGoogle Scholar
Navot, Y. 1999 Critical behavior of drop breakup in axisymmetric viscous flow. Phys. Fluids 11, 990996.CrossRefGoogle Scholar
Pozrikidis, C. 1992 Boundary Integral and Singularity Methods for Linearized Viscous Flow. Cambridge University Press.CrossRefGoogle Scholar
Rallison, J. M. 1980 Note on the time-dependent deformation of a viscous drop which is almost spherical. J. Fluid Mech. 98, 625633.CrossRefGoogle Scholar
Rallison, J. M. & Acrivos, A. 1978 Numerical study of deformation and burst of a viscous drop in an extensional flow. J. Fluid Mech. 89, 191200.CrossRefGoogle Scholar
Renardy, Y. 2006 Numerical simulation of a drop undergoing large amplitude oscillatory shear. Rheol. Acta 45, 223227.CrossRefGoogle Scholar
Shaqfeh, E. S. G. 2005 The dynamics of single-molecule DNA in flow. J. Non-Newtonian Fluid Mech. 130, 128.CrossRefGoogle Scholar
Song, H., Chen, D. L. & Ismagilov, R. F. 2006 Angew. Chem. Int. Ed. 45, 73367356.CrossRefGoogle Scholar
Tan, Y. C., Fisher, J. S., Lee, A. I., Cristini, V. & Lee, A. P. 2004 Design of microfluidic channel geometries for the control of droplet volume, chemical concentration, and sorting. Lab Chip 6, 954957.Google Scholar
Taylor, G. I. 1934 The formation of emulsions in definable fields of flow. Proc. R. Soc. Lond. A 146, 501523.Google Scholar
Torza, S., Cox, R. G. & Mason, S. G. 1972 Particle motions in sheared suspensions XXVII. Transient and steady deformation and burst of liquid drops. J. Colloid Interface Sci. 38, 395411.CrossRefGoogle Scholar
Tucker, C. L. III & Moldenaers, P. 2002 Microstructural evolution in polymer blends. Ann. Rev. Fluid Mech. 34, 177210.CrossRefGoogle Scholar
Vlahovska, P. M. 2003 Dynamics of surfactant-covered drops and the non-Newtonian rheology of emulsions. PhD thesis, Yale University.Google Scholar
Vlahovska, P., Bławzdziewicz, J. & Loewenberg, M. 2005 Deformation of a surfactant-covered drop in a linear flow. Phys. Fluids 17, 103103.CrossRefGoogle Scholar
Vlahovska, P. M., Bławzdziewicz, J. & Loewenberg, M. 2008 Small-deformation theory for a surfactant-covered drop in linear flows. J. Fluid Mech. (submitted).CrossRefGoogle Scholar
Vlahovska, P. M. & Gracia, R. S. 2007 Dynamics of a viscous vesicle in linear flows. Phys. Rev. E 75, 016313.Google ScholarPubMed
Whitesides, G. M. & Stroock, A. D. 2001 Flexible methods for microfluidics. Phys. Today 54, 4248.CrossRefGoogle Scholar
Windhab, E. J., Dressler, M., Feigl, K., Fischer, P. & Megias-Alguacil, D. 2005 Emulsion processing: From single-drop deformation to design of complex processes and products. Chem. Engng Sci. 60, 21012113.CrossRefGoogle Scholar
Zinchenko, A. Z., Rother, M. A. & Davis, R. H. 1999 Cusping, capture, and breakup of interacting drops by a curvatureless boundary-integral algorithm. J. Fluid Mech. 391, 249292.CrossRefGoogle Scholar