Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-09T22:04:10.372Z Has data issue: false hasContentIssue false

Hydrodynamics of flagellated microswimmers near free-slip interfaces

Published online by Cambridge University Press:  22 January 2016

D. Pimponi
Affiliation:
Department of Mechanical and Aerospace Engineering, Sapienza University, Rome, Via Eudossiana 18, 00184, Italy
M. Chinappi
Affiliation:
Center for Life Nano Science@Sapienza, Istituto Italiano di Tecnologia, Roma, Viale Regina Elena 291, 00161, Italy
P. Gualtieri
Affiliation:
Department of Mechanical and Aerospace Engineering, Sapienza University, Rome, Via Eudossiana 18, 00184, Italy
C. M. Casciola*
Affiliation:
Department of Mechanical and Aerospace Engineering, Sapienza University, Rome, Via Eudossiana 18, 00184, Italy
*
Email address for correspondence: [email protected]

Abstract

The hydrodynamics of a flagellated micro-organism is investigated when swimming close to a planar free-slip surface by means of numerical solutions of the Stokes equations obtained via a boundary element method. Depending on the initial conditions, the swimmer can either escape from the free-slip surface or collide with the boundary. Interestingly, the micro-organism does not exhibit a stable orbit. Independently of escape or attraction to the interface, close to a free-slip surface, the swimmer follows a counter-clockwise trajectory, in agreement with experimental findings (Di Leonardo et al., Phys. Rev. Lett., vol. 106 (3), 2011, 038101). The hydrodynamics is indeed modified by the free surface. In fact, when the same swimmer moves close to a no-slip wall, a set of initial conditions exists which result in stable orbits. Moreover, when moving close to a free-slip or a no-slip boundary, the swimmer assumes a different orientation with respect to its trajectory. Taken together, these results contribute to shed light on the hydrodynamical behaviour of micro-organisms close to liquid–air interfaces which are relevant for the formation of interfacial biofilms of aerobic bacteria.

Type
Papers
Copyright
© 2016 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alouges, F., De Simone, A., Heltai, L., Lefebvre-Lepot, A. & Merlet, B. 2013 Optimally swimming Stokesian robots. J. Discrete Continuous Dyn. Syst. B 18 (5), 11891215.Google Scholar
Asmolov, E. S., Dubov, A. L., Nizkaya, T. V., Kuehne, A. & Vinogradova, O. I. 2015 Principles of transverse flow fractionation of microparticles in superhydrophobic channels. Lab on a Chip 15, 28352841.CrossRefGoogle ScholarPubMed
Bazant, M. Z. & Vinogradova, O. I. 2008 Tensorial hydrodynamic slip. J. Fluid Mech. 613, 125134.Google Scholar
Berg, H. C. 2004 E. coli in Motion. Springer Science & Business Media.Google Scholar
Berg, H. C. & Anderson, R. A. 1973 Bacteria swim by rotating their flagellar filaments. Nature 245.Google Scholar
Blake, J. R. 1971 A note on the image system for a stokeslet in a no-slip boundary. In Mathematical Proceedings of the Cambridge Philosophical Society, vol. 70, pp. 303310. Cambridge University Press.Google Scholar
Bolognesi, G., Cottin-Bizonne, C., Guene, E. M., Teisseire, J. & Pirat, C. 2013 A novel technique for simultaneous velocity and interface profile measurements on micro-structured surfaces. Soft Matt. 9 (7), 22392244.CrossRefGoogle Scholar
Cencini, M., Cecconi, F. & Vulpiani, A. 2009 Chaos. World Scientific.Google Scholar
Chantawannakul, P., Oncharoen, A., Klanbut, K., Chukeatirote, E. & Lumyong, S. 2002 Characterization of proteases of Bacillus subtilis strain 38 isolated from traditionally fermented soybean in Northern Thailand. Sci. Asia 28 (4), 241245.CrossRefGoogle Scholar
Chinappi, M. & Casciola, C. M. 2010 Intrinsic slip on hydrophobic self-assembled monolayer coatings. Phys. Fluids 22 (4), 042003.CrossRefGoogle Scholar
Constantin, O. E. 2009 Bacterial biofilms formation at air liquid interfaces. Innovative Romanian Food Biotechnology 5, 1822.Google Scholar
Crowdy, D., Lee, S., Samson, O., Lauga, E. & Hosoi, A. E. 2011 A two-dimensional model of low-Reynolds number swimming beneath a free surface. J. Fluid Mech. 681, 2447.Google Scholar
Darnton, N. C. & Berg, H. C. 2007 Force extension measurements on bacterial flagella: triggering polymorphic transformations. Biophys. J. 92 (6), 22302236.Google Scholar
Di Leonardo, R., Angelani, L., Dell Arciprete, D., Ruocco, G., Iebba, V., Schippa, S., Conte, M. P., Mecarini, F., De Angelis, F. & Di Fabrizio, E. 2010 Bacterial ratchet motors. Proc. Natl Acad. Sci. USA 107 (21), 95419545.Google Scholar
Di Leonardo, R., Dell Arciprete, D., Angelani, L. & Iebba, V. 2011 Swimming with an image. Phys. Rev. Lett. 106 (3), 038101.Google ScholarPubMed
Diebel, J. 2006 Representing attitude: Euler angles, unit quaternions, and rotation vectors. Matrix 58, 1516.Google Scholar
Ehling-Schulz, M., Fricker, M. & Scherer, S. 2004 Bacillus cereus, the causative agent of an emetic type of food-borne illness. Mol. Nutrition Food Res. 48 (7), 479487.Google Scholar
Elgeti, J., Winkler, R. G. & Gompper, G.2014 Physics of microswimmers-single particle motion and collective behavior. arXiv:1412.2692.CrossRefGoogle Scholar
Fauci, L. J. & Dillon, R. 2006 Biofluidmechanics of reproduction. Annu. Rev. Fluid Mech. 38, 371394.Google Scholar
Gentili, D., Bolognesi, G., Giacomello, A., Chinappi, M. & Casciola, C. M. 2014 Pressure effects on water slippage over silane-coated rough surfaces: pillars and holes. Microfluid. Nanofluid. 16 (6), 10091018.Google Scholar
Gershman, M. D., Kennedy, D. J., Noble-Wang, J., Kim, C., Gullion, J., Kacica, M., Jensen, B., Pascoe, N., Saiman, L., McHale, J. et al. 2008 Multistate outbreak of pseudomonas fluorescens bloodstream infection after exposure to contaminated heparinized saline flush prepared by a compounding pharmacy. Clin. Infec. Dis. 47 (11), 13721379.CrossRefGoogle ScholarPubMed
Giacché, D., Ishikawa, T. & Yamaguchi, T. 2010 Hydrodynamic entrapment of bacteria swimming near a solid surface. Phys. Rev. E 82 (5), 056309.Google Scholar
Golub, G. H. & Van Loan, C. F. 2012 Matrix Computations, vol. 3. JHU Press.Google Scholar
Guasto, J. S., Rusconi, R. & Stocker, R. 2012 Fluid mechanics of planktonic microorganisms. Annu. Rev. Fluid Mech. 44, 373400.Google Scholar
Hancock, G. J. 1953 The self-propulsion of microscopic organisms through liquids. Proc. R. Soc. Lond. A 217 (1128), 96121.Google Scholar
Happel, J. & Brenner, H. 1983 Low Reynolds Number Hydrodynamics: with Special Applications to Particulate Media, vol. 1. Springer Science & Business Media.Google Scholar
Higdon, J. J. L. 1979a A hydrodynamic analysis of flagellar propulsion. J. Fluid Mech. 90 (04), 685711.Google Scholar
Higdon, J. J. L. 1979b The hydrodynamics of flagellar propulsion: helical waves. J. Fluid Mech. 94 (02), 331351.Google Scholar
Hsiao, G. & MacCamy, R. C. 1973 Solution of boundary value problems by integral equations of the first kind. SIAM Rev. 15 (4), 687705.Google Scholar
Jana, S., Um, S. H. & Jung, S. 2012 Paramecium swimming in capillary tube. Phys. Fluids 24 (4), 041901.Google Scholar
Keim, N. C., Garcia, M. & Arratia, P. E. 2012 Fluid elasticity can enable propulsion at low Reynolds number. Phys. Fluids 24 (8), 081703.Google Scholar
Koza, A., Hallett, P. D., Moon, C. D. & Spiers, A. J. 2009 Characterization of a novel air–liquid interface biofilm of pseudomonas fluorescens SBW25. Microbiology 155 (5), 13971406.Google Scholar
Ladyzhenskaya, O. A. & Silverman, R. A. 1969 The Mathematical Theory of Viscous Incompressible Flow, vol. 76. Gordon and Breach.Google Scholar
Lauga, E. 2009 Life at high Deborah number. Europhys. Lett. 86 (6), 64001.Google Scholar
Lauga, E. 2011 Life around the scallop theorem. Soft Matt. 7 (7), 30603065.Google Scholar
Lauga, E., DiLuzio, W. R., Whitesides, G. M. & Stone, H. A. 2006 Swimming in circles: motion of bacteria near solid boundaries. Biophys. J. 90 (2), 400412.Google Scholar
Lauga, E. & Powers, T. R 2009 The hydrodynamics of swimming microorganisms. Rep. Prog. Phys. 72 (9), 096601.CrossRefGoogle Scholar
Lemelle, L., Palierne, J.-F., Chatre, E. & Place, C. 2010 Counterclockwise circular motion of bacteria swimming at the air–liquid interface. J. Bacteriol. 192 (23), 63076308.Google Scholar
Li, G., Bensson, J., Nisimova, L., Munger, D., Mahautmr, P., Tang, J. X., Maxey, M. R. & Brun, Y. V. 2011 Accumulation of swimming bacteria near a solid surface. Phys. Rev. E 84 (4), 041932.CrossRefGoogle Scholar
Li, G. & Tang, J. X. 2006 Low flagellar motor torque and high swimming efficiency of Caulobacter crescentus swarmer cells. Biophys. J. 91 (7), 27262734.Google Scholar
Li, G. & Tang, J. X. 2009 Accumulation of microswimmers near a surface mediated by collision and rotational Brownian motion. Phys. Rev. Lett. 103 (7), 078101.Google Scholar
Lopez, D. & Lauga, E. 2014 Dynamics of swimming bacteria at complex interfaces. Phys. Fluids 26 (7), 071902.Google Scholar
Maxey, M. R. 2011 Biomimetics and cilia propulsion. J. Fluid Mech. 678, 14.Google Scholar
Morse, M., Huang, A., Li, G., Maxey, M. R. & Tang, J. X. 2013 Molecular adsorption steers bacterial swimming at the air/water interface. Biophys. J. 105 (1), 2128.CrossRefGoogle ScholarPubMed
Nizkaya, T. V., Asmolov, E. S., Zhou, J., Schmid, F. & Vinogradova, O. I.2014 Flows and mixing in channels with misaligned superhydrophobic walls. arXiv:1409.6711.Google Scholar
Pak, O. S., Zhu, L., Brandt, L. & Lauga, E. 2012 Micropropulsion and microrheology in complex fluids via symmetry breaking. Phys. Fluids 24 (10), 103102.Google Scholar
Phan-Thien, N., Tran-Cong, T. & Ramia, M. 1987 A boundary-element analysis of flagellar propulsion. J. Fluid Mech. 184, 533549.Google Scholar
Pimponi, D., Chinappi, M., Gualtieri, P. & Casciola, C. M. 2014 Mobility tensor of a sphere moving on a superhydrophobic wall: application to particle separation. Microfluid. Nanofluid. 16 (3), 571585.Google Scholar
Pozrikidis, C. 1992 Boundary Integral and Singularity Methods for Linearized Viscous Flow, Cambridge University Press.CrossRefGoogle Scholar
Pratt, L. A. & Kolter, R. 1998 Genetic analysis of E. coli biofilm formation: roles of flagella, motility, chemotaxis and type I PILI. Mol. Microbiol. 30 (2), 285293.Google Scholar
Purcell, E. M. 1977 Life at low Reynolds number. Am. J. Phys. 45 (1), 311.Google Scholar
Qiu, T., Lee, T.-C., Mark, A. G., Morozov, K. I., Münster, R., Mierka, O., Turek, S., Leshansky, A. M. & Fischer, P. 2014 Swimming by reciprocal motion at low Reynolds number. Nat. Commun. 5.Google Scholar
Ramia, M., Tullock, D. L. & Phan-Thien, N. 1993 The role of hydrodynamic interaction in the locomotion of microorganisms. Biophys. J. 65 (2), 755778.Google Scholar
Rusconi, R., Lecuyer, S., Guglielmini, L. & Stone, H. A. 2010 Laminar flow around corners triggers the formation of biofilm streamers. J. R. Soc. Interface 7 (50), 12931299.Google Scholar
Sega, M., Sbragaglia, M., Biferale, L. & Succi, S. 2013 Regularization of the slip length divergence in water nanoflows by inhomogeneities at the Angstrom scale. Soft Matt. 9 (35), 85268531.Google Scholar
Shum, H. & Gaffney, E. A. 2012 The effects of flagellar hook compliance on motility of monotrichous bacteria: a modeling study. Phys. Fluids 24 (6), 061901.Google Scholar
Shum, H., Gaffney, E. A. & Smith, D. J. 2010 Modelling bacterial behaviour close to a no-slip plane boundary: the influence of bacterial geometry. Proc. R. Soc. Lond. A 466, 17251748.Google Scholar
Sokolov, A., Apodaca, M. M., Grzybowski, B. A. & Aranson, I. S. 2010 Swimming bacteria power microscopic gears. Proc. Natl Acad. Sci. USA 107 (3), 969974.Google Scholar
Taylor, G. 1951 Analysis of the swimming of microscopic organisms. Proc. R. Soc. Lond. A 209 (1099), 447461.Google Scholar
Trachtenberg, S., Gilad, R. & Geffen, N. 2003 The bacterial linear motor of Spiroplasma melliferum BC3: from single molecules to swimming cells. Mol. Microbiol. 47 (3), 671697.Google Scholar
Trouilloud, R., Tony, S. Y., Hosoi, A. E. & Lauga, E. 2008 Soft swimming: exploiting deformable interfaces for low Reynolds number locomotion. Phys. Rev. Lett. 101 (4), 048102.Google Scholar
Vogel, R. & Stark, H. 2010 Force extension curves of bacterial flagella. Eur. Phys. J. E 33 (3), 259271.Google Scholar
Volkmer, B. & Heinemann, M. 2011 Condition-dependent cell volume and concentration of E. coli to facilitate data conversion for systems biology modeling. PLoS ONE 6 (7), e23126.Google Scholar
Wang, F., Yuan, J. & Berg, H. C. 2014 Switching dynamics of the bacterial flagellar motor near zero load. Proc. Natl Acad. Sci. USA 111 (44), 1575215755.CrossRefGoogle ScholarPubMed
Yang, J., Wolgemuth, C. W. & Huber, G. 2009 Kinematics of the swimming of Spiroplasma. Phys. Rev. Lett. 102 (21), 218102.Google Scholar