No CrossRef data available.
Published online by Cambridge University Press: 09 May 2025
The hydrodynamic interactions between a sedimenting microswimmer and a solid wall have ubiquitous biological and technological applications. A plethora of gravity-induced swimming dynamics near a planar no-slip wall provide a platform for designing artificial microswimmers that can generate directed propulsion through their translation–rotation coupling near a wall. In this work, we provide exact solutions for a squirmer (a model swimmer of spherical shape with a prescribed slip velocity) facing either towards or away from a planar wall perpendicular to gravity. These exact solutions are used to validate a numerical code based on the boundary integral method with an adaptive mesh for distances from the wall down to 0.1 % of the squirmer radius. This boundary integral code is then used to investigate the rich gravity-induced dynamics near a wall, mapping out the detailed bifurcation structures of the swimming dynamics in terms of orientation and distance to the wall. Simulation results show that a squirmer may traverse the wall, move to a fixed point at a given height with a fixed orientation in a monotonic way or in an oscillatory fashion, or oscillate in a limit cycle in the presence of wall repulsion.