Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-09T21:38:25.221Z Has data issue: false hasContentIssue false

Hydrodynamic instabilities in cylindrical thermocapillary liquid bridges

Published online by Cambridge University Press:  26 April 2006

H. C. Kuhlmann
Affiliation:
Center of Applied Space Technology and Microgravity, ZARM – University of Bremen, 2800 Bremen 33, Germany
H. J. Rath
Affiliation:
Center of Applied Space Technology and Microgravity, ZARM – University of Bremen, 2800 Bremen 33, Germany

Abstract

The hydrodynamic stability of steady axisymmetric thermocapillary flow in a cylindrical liquid bridge is investigated by linear stability theory. The basic state and the three-dimensional disturbance equations are solved by various spectral methods for aspect ratios close to unity. The critical modes have azimuthal wavenumber one and the most dangerous disturbance is either a pure hydrodynamic steady mode or an oscillatory hydrothermal wave, depending on the Prandtl number. The influence of heat transfer through the free surface, additional buoyancy forces, and variations of the aspect ratio on the stability boundaries and the neutral mode are discussed.

Type
Research Article
Copyright
© 1993 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Barten, W., Lücke, M. & Kamps, M. 1990 Conservation and breaking of mirror symmetry in a numerical simulation of vortex flow. J. Comput. Phys. 91, 468.Google Scholar
Carpenter, B. M. & Homsy, G. M. 1989 Combined buoyant–thermocapillary flow in a cavity. J. Fluid Mech. 207. 121.Google Scholar
Carpenter, B. M. & Homsy, G. M. 1990 High Marangoni number convection in a square cavity: Part II. Phys. Fluids A 2, 137.Google Scholar
Chang, C. E. & Wilcox, W. R. 1976 Analysis of surface tension driven flow in floating zone melting. Intl J. Heat Mass Transfer 19, 355.Google Scholar
Chun, C.-H. 1980 Experiments on steady and oscillatory temperature distribution in a floating zone due to the Marangoni convection. Acta Astronautica 7, 479.Google Scholar
Clark, P. A. & Wilcox, W. R. 1980 Influence of gravity on thermocapillary convection in floating zone melting of Silicon. J. Cryst. Growth 50, 461.Google Scholar
Cröll, A., Müller-Sebert, W., Benz, K. W. & Nitsche, R. 1991 Natural and thermocapillary convection in partially confined silicon melt zones. Microgravity Sci. Tech. 3, 204.Google Scholar
Fu, B.-I. & Ostrach, S. 1985 Numerical solutions of thermocapillary flows in floating zones. In Transport Phenomena in Materials Processing, Power Eng. Div. vol. 10. Heat Transfer Div. vol. 29, p. 1. ASME.
Gary, J. & Helgason, R. 1970 A matrix method for ordinary differential eigenvalue problems. J. Comput. Phys. 5, 169.Google Scholar
Goussis, D. A. & Pearlstein, A. J. 1989 Removal of infinite eigenvalues in a generalized matrix eigenvalue problem. J. Comput. Phys. 84, 242.Google Scholar
Hardin, G. R., Sani, R. L., Henry, D. & Roux, B. 1990 Buoyancy-driven instability in a vertical cylinder: Binary fluids with Soret effect. Part I: General theory and stationary stability results. Intl J. Num. Meth. Fluids 10, 79.Google Scholar
Jones, C. A. 1985a Numerical methods for the transition to wavy Taylor vortices. J. Comput. Phys. 61, 321.Google Scholar
Jones, C. A. 1985b The transition to wavy Taylor vortices. J. Fluid Mech. 157, 135.Google Scholar
Kamotani, Y., Ostrach, S. & Vargas, M. 1984 Oscillatory thermocapillary convection in a simulated floating – zone configuration. J. Cryst. Growth 66, 83.Google Scholar
Kazarinoff, N. D. & Wilkowski, J. S. 1990 Bifurcations of numerically simulated thermocapillary flows in axially symmetric float zones. Phys. Fluids A 2, 1797.Google Scholar
Kuhlmann, H. 1989 Small amplitude thermocapillary flow and surface deformations in a liquid bridge. Phys. Fluids A 1, 672.Google Scholar
Kuhlmann, H. C. & Adabala, R. R. 1993 Biorthogonal series method for Oseen type flows. Intl J. Engng Sci. (to appear.)Google Scholar
Neitzel, G. P., Chang, K.-T., Jankowski, D. F. & Mittelmann, H. D. 1992 Linear stability of thermocapillary convection in a model of float-zone crystal growth. AIAA-92-0604.Google Scholar
Neitzel, G. P., Law, C. C., Jankowski, D. F. & Mittelmann, H. D. 1991 Energy stability of thermocapillary convection in a model of the float-zone crystal-growth process. II: Nonaxisymmetric disturbances. Phys. Fluids A 3, 2841.CrossRefGoogle Scholar
Pearson, J. R. A. 1958 On convection cells induced by surface tension. J. Fluid Mech. 4, 489.Google Scholar
Peters, G. & Wilkinson, J. H. 1970 Ax = λBx and the generalized eigenproblem. SIAM J. Num. Anal. 7, 479.Google Scholar
Preisser, F., Schwabe, D. & Scharmann, A. 1983 Steady and oscillatory thermocapillary convection in liquid columns with free cylindrical surface. J. Fluid Mech. 126, 545.Google Scholar
Rupp, R., Müller, G. & Neumann, G. 1989 Three-dimensional time dependent modelling of the Marangoni convection in zone melting configurations for GaAs. J. Cryst. Growth 97, 34.Google Scholar
Rybicki, A. & Floryan, J. M. 1987 Thermocapillary effects in liquid bridges. I. Thermocapillary convection. Phys. Fluids 30, 1956.Google Scholar
Sen, A. K. & Davis, S. H. 1982 Steady thermocapillary flows in two-dimensional slots. J. Fluid Mech. 121, 163.Google Scholar
Shen, Y. 1989 Energy stability of thermocapillary convection in a model of float-zone crystal growth. Ph.D. thesis, Arizona State University.
Shen, Y., Neitzel, G. P., Jankowski, D. F. & Mittelmann, H. D. 1990 Energy stability of thermocapillary convection in a model of the float-zone crystal-growth process. J. Fluid Mech. 217, 639.Google Scholar
Smith, M. K. 1986a Thermocapillary and centrifugal-buoyancy-driven motion in a rapidly rotating liquid cylinder. J. Fluid Mech. 166, 245.Google Scholar
Smith, M. K. 1986b Instability mechanisms in dynamic thermocapillary liquid layers. Phys. Fluids 29, 3182.Google Scholar
Smith, M. K. 1988 The nonlinear stability of dynamic thermocapillary liquid layers. J. Fluid Mech. 194, 391.Google Scholar
Smith, M. K. & Davis, S. H. 1983a Instabilities of dynamic thermocapillary liquid layers. Part 1. Convective instabilities. J. Fluid Mech. 132, 119.Google Scholar
Smith, M. K. & Davis, S. H. 1983b Instabilities of dynamic thermocapillary liquid layers. Part 2. Surface-wave instabilities. J. Fluid Mech. 132, 145.Google Scholar
Velten, R., Schwabe, D. & Scharmann, A. 1991 The periodic instability of thermocapillary convection in cylindrical liquid bridges. Phys. Fluids A 3, 267.Google Scholar
Xu, J.-J. & Davis, S. H. 1983 Liquid bridges with thermocapillarity. Phys. Fluids 26, 2880.Google Scholar
Xu, J.-J. & Davis, S. H. 1984 Convective thermocapillary instabilities in liquid bridges. Phys. Fluids 27, 1102.Google Scholar
Zebib, A., Homsy, G. M. & Meiburg, E. 1985 High Marangoni number convection in a square cavity. Phys. Fluids 28, 3467.Google Scholar
Supplementary material: PDF

Kuhlmann and Rath supplementary material

Appendix

Download Kuhlmann and Rath supplementary material(PDF)
PDF 920.2 KB